期刊文献+

多频率多函数小波(英文)

MultiFrequency MultiFunctions Wavelet
下载PDF
导出
摘要 本文把通过方向多分辨分析构造的由一个函数生成的多频率小波推广到由有限个函数生成的多频率小波 .给出由n2 j1+j2 个函数 φ1 ,… ,φn,ψ1 ,… ,ψn( 2 j1+ j2 - 1 ) 的平移生成Vj( 1) In this paper,multifrequency wavelets,vi a d irectional multiresolution analysis,generated by a single function is extended to wavelets generated by a finite number of functions.We derive necessary and s ufficient conditions for translates of φ 1,…,φ n,ψ 1,…,ψ n(2 j 1+j 2 -1)  form a Riesz basis for V j (1) ,and some of the b asic mathematical structures.
作者 石智 宋国乡
出处 《应用数学》 CSCD 北大核心 2003年第4期89-95,共7页 Mathematica Applicata
基金 Supportedbynationaldefenceresearchfoundation(WOOOT4 5)
关键词 频率 函数 小波 方向多分辨分析 RIESZ基 级数 Directional multiresolution analysis Wavelets
  • 相关文献

参考文献9

  • 1Goodman TNT,Lee S L,Tang W S. Wavelet in wandering subspaees[J]. Trans Amer Math Soe , 1993,338(2) :639-654.
  • 2Goodman TNT, Lee S L. Wavelet of multiplicity [J]. Trans Amer Math Soc, 1994,342 (2) :307 -324.
  • 3Charles K Chui, Xianliang Shi. On multi-frequency wavelet decompositions[A], Recent Advance in Wavelet[C]. Vanderbilt: Department of Mathematics, Vanderbilt University, 1993,155 - 189.
  • 4Daubeehiues I. Ten lectures on wavelet:CBMS-NSF Series in Apple Math[M]. Phliadephia:SIAM, 1991.
  • 5Shi Zhi,Song Guo Xiang. Two-dimensional wavelets generated by a finite number of functions[J]. Journal of Xidian University, 2000,27 (4) : 456 -460.
  • 6Vasily Strela. Multiwavelets: Regularity orthogonality and symmetry via two-scale similarity transform [J]. Studies in Applies Mathematics, 1997,5 : 335 -354.
  • 7Jelena Kovacevic, Martin Veerli. Non-separable multi-dimensional perfect reconstruction filter banks and wavelet bases for R^n [J]. IEEE Transaction on Information Theory, 1992,38 :533-549.
  • 8]ian-ao Lian. Othogonality criteria for multi-scaling funcitons[J]. Applied and computational harmonic analysis. 1998,5 : 277-311.
  • 9C K Shi, J A Lian. A study of orghonormal multi-wavelet[J]. J Appl Numer Math , 1996,20:272-298.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部