期刊文献+

基于参数小波的易碎水印安全性

Fragile Watermark Security Based on Parametric Wavelet
下载PDF
导出
摘要 首先讨论所有滤波长度为4的双正交小波的正则性,然后提出用这种参数小波提高易碎水印的安全性。研究结果表明:参数小波可以很容易同现有的水印算法结合提高水印的安全性,且不增加计算复杂度。 The regularity of all biorthonormal wavelets with filter length 4 is analyzed firstly. It is proposed to use secret wavelet filters to improve the security of digital watermarking schemes operating in the wavelet transform domain secondly. The results show that the parametric wavelet filters can be easily integrated into existing wavelet_based watermarking algorithms, resulting in improved security without additional computational complexity.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第5期11-14,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(60172067) 国家863计划资助项目(2002AA144060) 博士后基金资助项目(2002032243)
关键词 参数小波 正则性 易碎水印 安全性 parametric wavelet regularity fragile watermarking security
  • 相关文献

参考文献7

  • 1黄达人,刘九芬,李峰.滤波长度为5的双正交多尺度分析的构造[J].计算数学,2002,24(2):177-178. 被引量:5
  • 2刘九芬,李峰,黄达人,刘九芬.滤波长度为4的双正交多尺度分析的构造[J].计算机学报,2002,25(11):1184-1188. 被引量:6
  • 3MEERWALD P, UHL A. Watermark security via wavelet parametrization//IEEE Int Conf on Image Processing[C].2001, 3 : 1027 - 1030.
  • 4LIN E T, DELP E J. A review of fragile image watermarks///Proc of the Multimedia and Security Workshop[ C]. 1999, 25.
  • 5DAUBECHIES I. Ten lectures on wavelets. Society for Industrial and Applied Mathematics[ M], nontpelier: Capital City Press, 1992.
  • 6YU G J, LU C S, LIAO Y M, et al. Mean quantization blind watermarking for image authentication//IEEE Int Conf on Image Processing[C], 2000, Ⅲ: 706 -709.
  • 7KUNDUR D, HATZINAKOS D. Towards a telltale watermark technique for tamper-proofing// IEEE Int Conf on Image Processing[C]. 1998, 2:409- 413.

二级参考文献12

  • 1[1]Daubechies I. Orthonomal Bases of Compactly Supported Wavelets, Comm. Pure Appl.Math., 41 (1998), 909-996.
  • 2[2]Daubechies I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathemathics,Philadelphia, 1992.
  • 3[3]Mallat S. Multiresoution Approximations and Wavelet Orthonomal Basis of L2 (R), Trans.Amer. Soc., 315 (1989), 69-87.
  • 4[4]Lemarié P G. Sur I,existence des Analyses Multiresolutions en Theorie des Ondeletter,Rev. Mat. Iberoamericana, 8 (1992), 457-474.
  • 5[5]Lemarié P G. Projection Operators in Multiresolution Analysis, Proc. Sym. in Appl.Math., 47 (1993), 59-76.
  • 6[6]Ruilin Long. High Dimensional Wavelet Analysis, World Library Press, 1995.
  • 7[7]Meyer Y. Ondeletters ét otétratewrs, I, II, Hermamm, Paris, 1990.
  • 8[8]Jia R Q and Shen Z W. Multiresolution and Wavelets, Proceedings of the Edinburgh Mathematical Society, 37 (1994), 271-300.
  • 9[9]Gongqing Zhang. Lecture of Functional Analysis, Volume 1, Beijing University Press,1986.
  • 10[10]Lihua Yang and Feng Li. Construction of MRAs with Length 3. Lecture Notes in Scientific Computation, International Culture Publishing Inc. 2000.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部