期刊文献+

基于小波系数多尺度随机过程模型的去噪方法 被引量:5

Wavelet image denoising based on multiscale stochastic process coefficient model
原文传递
导出
摘要 用多尺度随机过程对小波图像系数进行建模,并在此基础上提出了基于多尺度随机过程模型的小波图像去噪方法。通过阈值判断和邻域判断相结合的方法区分出对应边缘处的系数。对边缘区小波系数树估计多尺度随机过程的参数,利用多尺度滤波器对小波系数进行估计,对非边缘区的小波系数则采用阈值萎缩方法进行估计。该方法很好地刻画了边缘区小波系数跨尺度的行为,可以很好地保持图像边缘;而且还给出了估计误差的方差,利于理论分析。实验表明:该方法的去噪误差要优于Sureshrink法,而且对图像边缘的保护更利于后续的图像分割和轮廓跟踪。 The multiscale stochastic process was used to model wavelet coefficients and to derive a new wavelet image denoising method. Thresholding decision making was combined with a neighbor decision rule to classify the wavelet coefficients into two classes, coefficients in sharp regions such as edges and coefficients in smooth regions. Then, a multiscale filter was used to estimate the noiseless coefficients in the first class, while those in the second class were estimated with wavelet shrinkage. The new model accurately describes the crossscale features of the coefficients in the first class, which preserves the edges. The error variance was also derived for further analyses. Experiments showed that the new method not only provides less reconstruction error than Sureshrink, but also facilitates further image processing such as image segmentation and contour tracing due to the good edge preservation.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第9期1222-1225,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家教育振兴计划项目
关键词 图像信号处理 小波系数 多尺度随机过程模型 图像去噪 去噪方法 阈值萎缩方法 image signal treatment wavelet multiscale stochastic process filtering
  • 相关文献

参考文献12

  • 1谢杰成,张大力,徐文立.一种小波去噪方法的几点改进[J].清华大学学报(自然科学版),2002,42(9):1269-1272. 被引量:26
  • 2Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81:425 - 455.
  • 3Basseville M, Benveniste A, Willsky A S. Multiscale autoregressive processes, part I and part II [J]. IEEE, Trans Signal Proc, 1992, 40(8) : 1915 - 1955.
  • 4Luettgen M R, Karl W C, Willsky A S, et al. Multiscale representations of Markov random fields [J]. IEEE Trans Signal Proc, 1993, 41(2) : 3377 - 3395.
  • 5Chou K C, WiUsky A S, Benveniste A. Multiscale recursive estimation, data Fusion, and regularization [J]. IEEE Trans Automatic Control, 1994, 39(3) : 464 - 478.
  • 6Luettgen M R, Karl W C, WiUsky A S. Efficient multiscale regualarization with applications to the computation of optical flow [J]. IEEE Trans Image Proc, 1994, 3(1): 41 -64.
  • 7Fieguth P W, Karl W C, Willsky A S, et al. Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry [J]. IEEE Trans Geoscience and Remote Sensing, 1995, 31 ( 2 ) t 280 - 292.
  • 8Schneider M K, Fieguth P W, Karl W C, et al. Multiscale methods of the segmentation and reconstruction of signals and images [J]. IEEE Trans Image Proc, 2000, 9(3):456 - 468.
  • 9Irving W M, Fieguth P W, Willsky A S. Overlapping tree approach to multiscale stochastic modeling and estimation[J]. IEEE Trans Image Proc, 1997, 6(11): 1517 -1529.
  • 10Raueh H E, Tung F, Striebel C T. Maximum likelihood estimate of linear dynamic systems [J]. AIAA J, 1965,3(8) : 1445 - 1450.

二级参考文献10

  • 1[1]Ching P C,So H C,Wu S Q.On wavelet denoising and its applications to time delay estimation [J].IEEE Trans Signal Processing,1999,47(10): 2879-2882.
  • 2[2]Gunawan D.Denoising images using wavelet transform [A].Proceedings of the 1999 IEEE Pacific Rim Conference on Communications,Computers and Signal Processing [C].Victoria BC,1999.83-85.
  • 3[3]Vidakovic B,Lozoya C B.On time-dependent wavelet denoising [J].IEEE Trans Signal Processing,1998,46(9): 2549-2551.
  • 4[4]Bruce A G,Gao HongYe.Understanding waveshrink: variance and bias estimation [EB/OL].http: //www.mathsoft.com.
  • 5[5]Mihcak M K,Kozintsev I,Ramchandran K,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficients [J].IEEE Signal Processing Letters,1999,6(12): 300-303.
  • 6[6]Malfait M,Roose D.Wavelet-based image denoising using a Markov random field a priori model [J].IEEE Trans Imgae Processing,1997,6(4): 549-565.
  • 7[7]Donoho D L,Johnstone I M.Ideal spatial adaptation via wavelet shrinkage [J].Biometrika,1994,81: 425-455.
  • 8[8]Donoho D L,Johnstone I M.Adapting to Unknown smoothness via wavelet shrinkage [J].J Am Stat Ass,1995,90: 1200-1224.
  • 9[9]Chang S G,Yu Bin,Vetterli M.Adaptive wavelet thresholding for image denoising and comopression [J].IEEE Trans Image Processing,2000,9(9): 1532-1546.
  • 10[10]Moulin P,Liu Juan.Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors [J].IEEE Trans Information Theory,1999,45: 909-919.

共引文献25

同被引文献52

  • 1尹向宝.小波变换在激光超声无损检测信号去噪中的应用[J].实验室研究与探索,2009,28(1):39-41. 被引量:6
  • 2姜国强,王景华,刘跃敏.数字滤波方法的改进及实现[J].洛阳工学院学报,1995,16(3):77-80. 被引量:2
  • 3吴立新,陈方玉.现代扫描电镜的发展及其在材料科学中的应用[J].武钢技术,2005,43(6):36-40. 被引量:71
  • 4Aleksandra Pizurica,Wilfried Philips,Ignace Lemahieu. A Guangxi Sciences, Vol. 11 No. 3, August 2004.joint inter-and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Trans on Image Processing, 2002,11 (5) :545 ~ 557.
  • 5Jean-Luc Starck. Emmanuel J Candes, David L Donoho.The curvelet transform for image denoising IEEE Trans on Image Processing, 2002,11 (6): 670- 684.
  • 6Ranta R,Heinrich C,Valerie Louis-Dorr ,et al. Interpretation and improvement of an iterative wavelet-based denoing method. IEEE Signal Processing Letters, 2003,10(8): 239-241.
  • 7Levent endur. Ivan W Selesnick. Bivariate shrinkage with local variance estimation. IEEE Signal Processing Letters,2002,9 (12): 438- 441.
  • 8Lei Zhang,Paul Bao. Denoising by spatial correlation thresholding. IEEE Trans on Circuits & Systems for Video Technology, 2003,13 (6): 535- 538.
  • 9Mario A T Figueiredo,Robert D Nowak. Wavelet-based image estimation: an empirical Bayes approach using Jeffreys' noninformative prior. IEEE Trans on Image Processing, 2001,10(9) : 1322-1331.
  • 10Huang X, Woolsey G A Image denoising using Wiener filtering and wavelet thresholding IEEE International Conference on, 2000.3:1759- 1762

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部