3Deuschel J D. Algebraic L^2 decay of attractive critical processes on the lattice. Ann Prob, 1994, 22:264 -283.
4Kemeny J G, Snell J L, Knapp A W. Denumerable Markov Chains. New York: Springer-Verlag, 1976.
5Coolen-Schrijner P, van Doorn E A. The deviation matrix of the continuous-time Markov chains. Probab Engrg Inform Sci, 2002, 16 : 351-366.
6Syski R. Ergodic potential. Stoch Proc Appl, 1978, 7:311-336.
7Chen M F. Equivalence of exponential ergodicity and L^2-exponential convergence for Maxkov chains. Stoch Proc Appl, 2000, 87:281-297.
8Feller W. An Introduction to Probability and its Applications, vol 2. New York: J Wiley, 1966.
9Hill E, Phillips R S. Functional analysis and semi-groups. Colloq Publ Amer Math Soc, 1957.
10Kijima M. Markov Processes for Stochastic Modelling. London: Chapman & Hall, 1997.
二级参考文献9
1[1]Chen M F. From Markov Chains to Non-equilibrium Particle Systems. Singapore: World Scientific, 1992
2[2]Anderson W. Continuous-Time Markov Chains. New York: Springer-Verlag, 1991
3[3]Kemeny J G, Snell J L, Knapp A W. Denumerable Markov Chains. New York: Springer-Verlag, 1976
4[4]Chen M F. Ergodic Convergence Rates for Markov Processes-Eigenvalues, Inequalities and Ergodic Theory.In: Proceedings of ICM, Beijing 2002, Vol III. Beijing: Higher Education Press, 2002
5[5]Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Beijing: Science Press, 1978
1CHEN MUFA(Department of Mathematics,Beijing Normal University,Beijing 100875,China).SINGLE BIRTH PROCESSES[J].Chinese Annals of Mathematics,Series B,1999,20(1):77-82. 被引量:15
2[1]Chen Mufa.Ergodic convergence rates of Markov processes[M].北京:高等教育出版社,2002
3[2]Mao Yonghua. Strong ergodicity for Markov processes by coupling method[J]. J Appl Prob, 2002,39: 839