期刊文献+

模糊序列模式在网络异常检测中的应用

Fuzzy Frequent Episodes Applied to the Intrusion Detetion
下载PDF
导出
摘要 数据挖掘中的关联原则挖掘和序列模式挖掘常用于网络入侵检测问题。在本文中 ,我们试图运用模糊集理论将序列挖掘算法进行改进 ,提出一种模糊序列模式用于网络异常检测 ,并用初步的实验对该算法进行证明。 Data mining methods including association rule mining and frequent episode mining have been applied to the intrusion detection problem.In this paper,we try to improve the algorithm of frequent episode mining by using fuzzy set methods,and propose a new algorithm that applied to the intrusion detection.Experiment can prove our algorithm.
作者 莫宁
机构地区 太原理工大学
出处 《山西电子技术》 2003年第3期3-5,10,共4页 Shanxi Electronic Technology
关键词 模糊序列模式 网络异常检测 数据挖掘 模糊集理论 网络安全 data mining frequent episodes fuzzy frequent episodes
  • 相关文献

参考文献7

  • 1[1]Hossain,Mahmood."Data mining approaches for intrusion detection:Issues and research directions,"In Proceedings of the 4th Annual IASTED International Conference on Software Engineering Applications(SEA 2000),Las Vegas,NV,Nov.6-9,2000.
  • 2[2]Hossain,Mahmood and Susan M.Bridges.2001.A framework for an adaptive intrusion detection system with data mining.In Proceedings of the 13th Annual Canadian Information Technology Security Symposium,Ottawa,Canada,June,2001.
  • 3[3]Bridges,Susan M.,and Rayford M.Vaughn,"Intrusion Detection Via Fuzzy Data Mining,"Proceedings of the 12th Annual Canadian Information Technology Security Symposium,Ottawa,Canada,June 19-23,2000,PP.109-122.
  • 4[4]Bridges,Susan M., and Rayford B.Vaughn.2000.Fuzzy Data Mining And Genetic Algorithms Applied to Intrusion Detection.Proceedings of the National Information Systems Security Conference(NISSC),October 16-19,2000,Baltimore,MD..
  • 5[5]Luo,Jianxiong and Susan M.Bridges.2000.Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection.International Journal of Intelligent Systems 15:687-703.
  • 6[6]Luo,JianZiong,Susan Bridgcs,Rayford Vaughn.2001.Fuzzy Frequent Episodes for Real-time Intrusion Detection FUZZIEEE 2001,Melbourne,AU,Dec 2-5.
  • 7[7]Jian Pei,Jiawei Han,Behzad Mortazavi-Asi,Helen Pinto.PrefixSpan:Mining Scquential Patterns Efficicntly by Prefix-Projected Pattern Growth.Intellinent Database Systems Research Lab.School of Computing Science,Simon Fraser University.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部