期刊文献+

盲信源分离中信源动态变化的识别 被引量:2

Blind source separation for identifying the changing source number
下载PDF
导出
摘要 基于独立分量分析(ICA)的盲信源分离技术以及小波包分解技术,提出了根据能量特征向量确定信源数的方法,定义了各输出分量的能量特征,并根据输出分量能量特征向量之间的距离,检测出冗余的输出信号,进而确定出信源数.计算机仿真结果验证了其有效性. Based on the energy eigenvector, a new approach for source number determination is presented by using the Independent Component Analysis (ICA) and the wavelet packet decomposition arithmetic. The energy eigenvector of output components is defined. According to the distance among the output component energy eigenvector the redundance output components can be detected and the number of source can be determined. The effectiveness of the arithmetic presented in this paper is verified through the computer simulation.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2003年第5期598-602,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(20072043)
关键词 独立分量分析 盲信源分离 小波包分解 自然梯度算法 Computer simulation Identification (control systems) Independent component analysis Signal processing Wavelet transforms
  • 相关文献

参考文献7

  • 1宋国乡.数值分析与小波分析初步[M].郑州:河南科学技术出版社,1993..
  • 2Yang H H, Amari S. Adaptive On-line Learning Algorithms for Blind Separatlon-Maximum Entropy and Minimum Mutual Irformation[J]. Neural Computation, 1997, (7): 1457-1482.
  • 3Comon P. Independent Component Analysis, a New Concept? [J]. Signal Processing, 1994, 64(4) : 287-314.
  • 4Bell A J, Sejnowski T J. An Information Maximization Approach to Blind Deconvolution[J]. Neural Comput, 1995, 7(5) : 1 129-I 159.
  • 5Cichocki A, Unbehauen R, Moszczynski L, et al, A New On-line Adaptive Learning Algorithm for blind Separation of Source Signals[A]. ISANN94[C]. Taiwan: 1994. 406-411.
  • 6Wickedmuser M V. Adapted Wavlet Analysis from Theory to Software[M]. New York: IEEE Press, 1994. 237-272.
  • 7Amari S, Cichocki A. Adaptive Blind Sbmal Processing-Neural Network Approaches[J]. Proc IEEE, 1998, 86(10) : 2026-2048.

共引文献1

同被引文献32

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部