期刊文献+

低温培养对大肠杆菌电穿孔转化效率的影响 被引量:5

Effect of Low-temperature Culture on the Transformation Efficiency of Escherichia coli by Electroporation
下载PDF
导出
摘要 在18℃和37℃振荡培养大肠杆菌DH5α并制备感受态细胞,用Eppendorf公司的Multiporator电转移仪进行电穿孔转化,研究了培养温度对转化效率的影响.实验结果表明,低温(18℃)培养的细菌,回收时的OD600值在0.5~1.0时,转化效率都维持在高水平;而在37℃培养的细菌,转化效率仅在OD600 0.6~0.7时出现一个锐利的峰值,此OD600值前后转化效率显著下降.在不影响细胞生长的情况下,18℃培养细菌的转化效率随电场强度增加而升高;而37℃培养的细菌在电场强度超过20.5 kV/cm时转化效率将大幅度下降.另外,还对影响转化效率的其他因素(培养基、振荡培养时的转速、细胞密度、质粒浓度、电击前后冰浴时间等)进行了优化,建立了一个便利而高效的质粒DNA电转化方法,获得1.02×1010cfu/μg DNA的高转化效率. E. coli DH5α was cultured at 18℃ and 37℃ respectively to prepare competent cells for electroporation with Eppendorf Multiporator to investigate the effect of low-temperature cultivation on the transformation efficiency. Our data proved high competence of electroporation in a wide range of cell concentrations (OD600 0. 5-1.0) at harvest when DH5α was grown at 18℃ . When cultured at 37℃ , there was a sharp peak of transformation efficiency at OD600 0.6-0.7. Transformation efficiency increased with increased field strength at 18℃ of cultivation and decreased significantly when field strength reached 20. 5 kV/cm at 37℃ of cultivation. And some influencing factors during cell culture and transformation, such as medium, cell density, concentration of plasmid DNA, pre- and post-shock incubation, concentration of ampicillin, etc, were also optimized. In conclusion, we have established a simple and efficient method for plasmid electro-transformation with high yield of transformation of 1.02 ×1010cfu/μg of DNA, which facilitated experiment schedule, and was efficient for several E. coli strains.
出处 《高技术通讯》 EI CAS CSCD 2003年第9期30-34,共5页 Chinese High Technology Letters
基金 863计划(2001AA626010)资助项目。
关键词 低温培养 感受态细胞 大肠杆菌 DH5Α 电穿孔 转化效率 电场强度 Low- temperature culture, Competent cells, E. coli DH5a, Electroporation, Transformation efficiency
  • 相关文献

参考文献1

二级参考文献10

  • 1[1]J.M.Zhang,L.Z.Ma,J.Y.Zhang,Q.Deng,J.H.Du,Z.Y.Zhong and Z.W.Zhang,Superalloys 718,625,706 and Various Derivatives ed.E.A.Loria (The Minerals,Metals and Materials Society,1997)p.183.
  • 2[2]J.M.Zhang,Z.Y.Gao,J.Y.Zhuang and Z.Y.Zhong,Metall.Mater.Trans.A 30A (1999) 2701.
  • 3[3]C.M.Sellars,Mater.Sci.Technol.6 (1990) 1072.
  • 4[4]C.M.Sellars,Int.Conf.on THERMEC 88,Tokyo,ed.Ⅰ.Tamura Iron Steel Inst.Jpn.June 6-10(1998) 448.
  • 5[5]C.M.Sellars and G.J.Davies,TMS,London,1979,p.3.
  • 6[6]R.Kopp,K.Karhausen and R.Schneidars,Proc.of 4th ICTP (Beijing,September,1993) p.1203.
  • 7[7]Y.V.R.K.Prasad and T.Seshacharyulu,Inter.Mater.Rev.43 (1998) 243.
  • 8[8]C.Devas,I.V.Samarasekera and E.B.Hawbolt,Metall.Trans.A 22A (1991) 335.
  • 9[9]G.S.Shen,S.L.Semitin and R.Shivpuri,Metall.Mater.Trans.A 26A (1997) 1795.
  • 10[10].J.H.Beynon,P.R.Brown,S.I.Mizban,A.R.S.Ponter and C.M.Sellars,Proc.of NUMIFORM Conf.eds.K.Mattiasson,A.Samuelsson,R.D.Wood,O.C.Zienkiewicz and A.A.Balkerna (Gothenburg,Sweden,Aug.2529,1986,Rotterdam,Holland) p.213.

共引文献60

同被引文献69

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部