期刊文献+

Size Dependence of Electronic Excitation Energy in Linear C_(2n)H and C_(2n-1)N

Size Dependence of Electronic Excitation Energy in Linear C_(2n)H and C_(2n-1)N
下载PDF
导出
摘要 The geometries, bondings, and vibrational frequencies of C 2n H ( n =3-9) and C 2n -1 N( n =3-9) were investigated by means of density functional theory(DFT). The vertical excitation energies for the X 2Π→ 2Π transitions of C 2n H( n =3-9) and for the X 2Σ→ 2Π and the X 2Π→ 2Π transitions of C 2n -1 N( n =3-9) have been calculated by the time-dependent density functional theory(TD-DFT) approach. On the basis of present calculations, the explicit expression for the wavelengths of the excitation energies in linear carbon chains is suggested, namely, λ 0=[1240 6A/(2+[KF(]3n+6-3n+3)](1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively. (1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively. The geometries, bondings, and vibrational frequencies of C 2n H ( n =3-9) and C 2n -1 N( n =3-9) were investigated by means of density functional theory(DFT). The vertical excitation energies for the X 2Π→ 2Π transitions of C 2n H( n =3-9) and for the X 2Σ→ 2Π and the X 2Π→ 2Π transitions of C 2n -1 N( n =3-9) have been calculated by the time-dependent density functional theory(TD-DFT) approach. On the basis of present calculations, the explicit expression for the wavelengths of the excitation energies in linear carbon chains is suggested, namely, λ 0=[1240 6A/(2+[KF(]3n+6-3n+3)](1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively. (1-B e -Cn ), where A=3 24463, B=0 90742 , and C = 0 07862 for C 2n H, and A=2 94714, B=0 83929 , and C =0 08539 for C 2n -1 N. In consideration of a comparison of the theory with the experiment, both the expressions are modified as λ 1=0 92( λ 0+100) and λ 1= 0 95( λ 0+90) for C 2n H and C 2n -1 N, respectively.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第4期454-458,共5页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China( Nos.2 0 1730 4 2 ,2 0 2 330 2 0 and2 0 0 2 10 0 2 ) and Trans-Century Training Programm e Foundation of the Educational Ministry of China
关键词 DFT and TD-DFT C 2n H C 2n -1 N Electronic spectrum DFT and TD-DFT, C 2n H, C 2n -1 N, Electronic spectrum
  • 相关文献

参考文献25

  • 1Douglas A E. Nature, 1977, 269, 130.
  • 2Kroto H W. Int Rev Phys Chem , 1981, 1, 309.
  • 3McCarthy M C , Travers M J , Kovacs A , et al. Astrophys J , Suppl Ser , 1997, 113, 105.
  • 4Thaddeus P , McCarthy M C , Travers M J , et al.Faraday Discuss , 1998, 109, 121.
  • 5Suzuki H , Ohishi M , Kaifu N , et al. Publ Astron Soc ,Jpn , 1986, 38, 911.
  • 6Cernicharo J , Guelin M . Astron Astrophys , 1996, 309,L27.
  • 7Freivogel P , Fulara J , Jakobi M , et al. J Chem Phys , 1995, 103, 54.
  • 8Kotterer M , Maler J P . Chem Phys Lett , 1997, 266,342.
  • 9Linnartz H , Motylewski T , Maier J P. J Chem Phys , 1999, 109, 3819.
  • 10Woon D E . Chem Phys Lett , 1995, 244, 45.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部