期刊文献+

ON TOURNAMENTS OF SMALL ORDERS AND THEIR APPLICATIONS

ON TOURNAMENTS OF SMALL ORDERS AND THEIR APPLICATIONS
原文传递
导出
摘要 In this paper, we generate all nonisomorphic tournaments of order at mostnine, all nonisomorphic almost regular tournaments of order 10 and all nonisomorphic regulartournaments of order 11. For each of these tournaments, we have given its score-list, connectivity,diameter, the minimal number of feedbacks, automorphisms and spectra. Moreover, we have verified thewell-known Kelly's Conjecture for n = 2k + 1 ≤ 11. And we also determine the n-universaltournaments for n ≤ 6. However, several related results are given and some related open problemsare raised.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2003年第4期475-482,共8页 系统科学与复杂性学报(英文版)
关键词 TOURNAMENTS APPLICATIONS 图论 竞赛图 小批量 非同构图 正则图
  • 相关文献

参考文献26

  • 1D Cvetkovic and M petric, A table of connected graphs on six vertices, Dis Math, 1984, 50:37-49.
  • 2D Cvetkovic and Z Radosavljevic. A table of regular graphs on at most ten vertices, Proceedings of the Sixth Yugoslav Seminar on Graph Theory, Dubrovnik, 1985, 71-105.
  • 3J W Moon. Topics on Tournaments, Holt, Reinhardand Winston, New York, 1968.
  • 4B S McKay. NAUTY User's Guide, Technical Report TR-CS-90-02, Computer Science Department. Australian National University, 1990.
  • 5C Thomassen. Reflection on graph theory, J Graph Theory, 1986, 10: 309-324.
  • 6R A Brualdi and Li Qiao, Research problems, problem 31, Dis Math, 1983,43: 329-330.
  • 7B Grunbaum. Antidirected Hamiltonian circuits in tournaments, J Combin.Theory B, 1971, 11:249-257.
  • 8M Rosenfeld. Antidirected Hamiltonian paths in tournaments, J Combin Theory B , 1972, 12:93-99.
  • 9M Rosenfeld. Antidirected Hamiltonian circuits in tournaments, J Combin. Theory B, 1974, 16:234-242.
  • 10C Thomassen, Antidirected Hamiltonian circuits and paths in tournaments, Math Ann, 1973,201: 231-238.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部