期刊文献+

Noether定理与黑洞的质量公式及黑洞熵 被引量:1

Noether Theorem and Black Hole's Mass Formula and Entropy
原文传递
导出
摘要 运用并发展了协变相空间的Noether荷方法,对于真空广义相对论稳态轴对称黑洞得到:黑洞质量公式是关于Killing向量场和完整Cauchy面上的零Noether荷以及黑洞力学第一定律。对于一大类向量场,利用零标架方法证明在视界附近的约化代数的中心项为零。这表明,Carlip用纯粹对称性分析的方法来解释黑洞熵的微观起源值得商榷。 The Noether charge formalism on the covariant phase space is used and developed. For a stationary axisym-metric black hole in vacuum general relativity, the mass formula is the vanishing Noether charge with respect to the Killing vector field an entire Cauchy surface. Its differential form gives the first law of black hole mechanics . For a large class of vector fields, the central term of the reduced algebra near the horizon is proved to be zero by use of the null tetrad formalism. It implies that the microscopic interpretation of the black hole entropy based on the symmetry analysis proposed by Carlip is debatable.
出处 《高能物理与核物理》 CSCD 北大核心 2003年第10期879-883,共5页 High Energy Physics and Nuclear Physics
基金 国家自然科学基金(90103004 10175070) 国家重点基础研究发展规划项目(G1998030601) 德国Alexander von Humboldt基金会~~
关键词 NOETHER定理 黑洞 质量公式 黑洞熵 真空广义相对论 VIRASORO代数 微分同胚不变性 Killing对称性 Noether theorem, mass formula of black hole, black hole entropy, Virasoro algebra, diffeomorphism invariance, Killing symmetry
  • 相关文献

参考文献2

二级参考文献11

  • 1[1]Jcobs SC,Flowers JL,Dunkin B,et al. Living Donor Nephreltomy[J]. Curr Opinion Urol,1999,9:115.
  • 2[2]John F,Robert E. Living related kidney donors:A-year experience[J]. Ann Surg,1986,203:637-643.
  • 3[1]R.M. Wald, "The First Law of Black Hole Mechanics",Directions in General Relativity, Vol. 1, eds. by B.L.HU, M. Ryan, and C.V. Vishveshwara, Cambridge Univ.Press, Cambridge (1993); gr-qc/9305022.
  • 4[2]R.M. Wald, Phys. Rev. D48 (1993) R3427; grqc/9307038.
  • 5[3]V. Iyer and R.M. Wald, Phys. Rev. D50 (1994) 846; grqc/9403028.
  • 6[4]W. Nelson, Phys. Rev. D50 (1994) 7400; hep-th/9406011.
  • 7[5]R.M. Wald, Living Rev. Rei. 4 (2001) 6 (gr-qc/9912119);and the references therein.
  • 8[6]J.D. Bekenstein, Phys. Rev. D7 (1973) 2333.
  • 9[7]L. Smarr, Phys. Rev. Lett. 30 (1973) 71.
  • 10[8]J.M. Bardeen, B. Carter, and S.W. Hawking, Commun.Math. Phys. 31 (1973) 161.

共引文献3

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部