期刊文献+

A non-monotone Phase-1 method in linear programming 被引量:4

线性规划非单调一阶段算法(英文)
下载PDF
导出
摘要 To gain superior computational efficiency, it might be necessary to change the underlying philosophy of the simplex method. In this paper, we propose a Phase-1 method along this line. We relax not only the conventional condition that some function value increases monotonically, but also the condition that all feasible variables remain feasible after basis change in Phase-1. That is, taking a purely combinatorial approach to achieving feasibility. This enables us to get rid of ratio test in pivoting, reducing computational cost per iteration to a large extent. Numerical results on a group of problems are encouraging. 为了获取计算的高效率 ,有必要修正单纯形算法的原则 .本文提出了一个新的单纯形一阶段算法 .与传统单纯形算法不同的是 ,新算法不仅不要求目标函数值单调变化 ,且在一阶段的迭代过程中也不必保持变量的可行性 ,而是采用纯组合的方法去达到可行 .这样摆脱了迭代时的比值检验 ,减少了每次迭代的计算工组量 .理论分析及数值计算结果表明新算法的前景令人鼓舞 .
作者 潘平奇 李炜
机构地区 东南大学数学系
出处 《Journal of Southeast University(English Edition)》 EI CAS 2003年第3期293-296,共4页 东南大学学报(英文版)
基金 TheNationalNaturalScienceFoundationofChina(199710 14 )
关键词 linear programming Phase-1 ratio-test-free pivoting rule 线性规划 非单调一阶段算法 单纯形算法 目标函数 迭代过程 无比检验 主元规则
  • 相关文献

参考文献1

  • 1Ping -Qi Pan. Practical finite pivoting rules for the simplex method[J] 1990,OR Spektrum(4):219~225

同被引文献32

  • 1Ping-qi Pan (Department of Applied Mathematics, Southeast University, Nanjing 210096, China.).PRIMAL PERTURBATION SIMPLEX ALGORITHMS FOR LINEAR PROGRAMMING[J].Journal of Computational Mathematics,2000,18(6):587-596. 被引量:5
  • 2吴延东.“求线性规划问题可行基的一种方法”的注记[J].运筹与管理,2005,14(4):52-54. 被引量:2
  • 3Zionts S. The criss-cross method for solving linear programming problems [J]. Management Science, 1969, 15 (7):426--445.
  • 4Cottle R W, Chang Y Y. Least index resolution of degeneracy in linear complementarily problems with sufficient matrices[J]. SIAM Journal on Matrix Analysis and Applications, 1992,13(4) : 1131--1141.
  • 5Terlaky T. A convergent criss-cross method[J]. Math Oper und Stat ser Optimization, 1985,16(5) : 683--690.
  • 6Wang Z. A conformal elimination-free algorithm for oriented matroid programming[J]. Chinese Annals of Mathematics, 1987,8(B1) : 16--25.
  • 7Terlaky T. A finite criss-cross method for oriented matroids [J]. Journal of Combinatorial Theory, 1987, 42 (3): 319--327.
  • 8Klafszky E, Terlaky T. Some generalizations of the crisscross method for quadratic programming[J]. Math Oper Und Stat. Ser. Optimization, 1992,24(1/2) : 127-- 139.
  • 9Klafszky E, Terlaky T. Some generalizations of the crisscross method for the linear complementarity problem of oriented mat roids[J]. Combinatorica, 1989,9 (2) : 189 -- 198.
  • 10Den Hertog D, Roos C, Terlaky T. The linear complimentarity problem, sufficient matrices and the crisscross method[J]. Linear Algebra and its Applications, 1993, 187: 1--14.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部