摘要
如果全连续对称核K的正特征值的个数与负特征值的个数没有任何限制,这种核称为一般核。本文在比已有存在性定理的条件更广的条件下,证明了一般核的Hammerstein型积分方程解的存在性。
We consider nonlinear integral equations of the Hammerstein type
x=Kf(x) (1)
Let H be a real Hilbert space, K:H→H a completely continuous selfadjoint operator with characteristic values
……<λ_(-2)λ_(-1)<0<λ_0<λ_1<λ_2<……
Let f:H→H be a continuous potential operator, i. c. f(x)=grad F(x), we suppose that
(ⅰ)there exist numbers μ_N, μ_(N+1), such that λ_N<μ_N<μ_(N+1)<λ_(N+1), and
μ_n||x||~2-c_1≤2F(x)≤μ_(N+1)||x||~2+c_2
for any x∈H, where c_1, c_2>0 are constants. Let H_1 be the subspace spanned by characteristic elements which correspond to characteristic values λ_(N+1), λ_(N+1),…, and H_2 the subspace spanned by characteristic elements which correspond to characteristic values λ_N, λ_(N-1),…, and elements x which satisfy Kx=0. Let P_1 and P_2 be the orthognal projection from H onto H_1 and H_2 respectively. We suppose that
(ⅱ)for any z∈H_2, there exists v=v(z)∈H_2, v≠0, such that
(z-P_2Kf(y+z), v)>0
for any y∈H_1 satisfying y=P_1Kf(y+z) and z≠P_2Kf(y+z).
We have proved
Theorem If conditions(ⅰ) (ⅱ)are satisfied, then equation (1) has at least one solution.
出处
《山东大学学报(自然科学版)》
CSCD
1992年第1期12-22,共11页
Journal of Shandong University(Natural Science Edition)
关键词
积分方程
一般核
极小点
存在性
general kernel
gradient
weakly lower semicontinuous
weakly upper semicontinuous
minimal point