摘要
设f(z)于单位圆盘全纯,级λ为有穷正数,则在单位圆周上必存在λ级Hayman 点,即存在一点z_0=e^(iθ_0),使对任意正数ε,f(z)在角域|argz—θ_0|<ε中没有有穷的λ+1级Borel 例外值或者它的每一级导数f^((k))(z)没有有穷非零的λ+1级Borel 例外值.
If f(z)is a holomorphic function of finite order λ>0 in |z|<1,then there exists aHayman's point of order λon |z|=1,i.e.,a point z_0=e(?) such that f(z)has not any finiteBorel's exception of order λ+1 or the k^(th) derivative f^(k)(z)for each integer k has not any fi-nite non—zero Borel's exception of order λ+1 in an arbitrary small angular domain of z_0.
出处
《山东大学学报(自然科学版)》
CSCD
1992年第4期419-424,共6页
Journal of Shandong University(Natural Science Edition)
基金
国家自然科学基金
关键词
全纯函数
Hayman点
unit disc
holomorphic function
Hayman point