期刊文献+

固体吸附制冷系统中的气液回热 被引量:1

GAS-LIQUID HEAT EXCHANGE ON ADSORPTION REFRIGERATION SYSTEM
下载PDF
导出
摘要 对固体吸附制冷系统中的气液回热进行了研究 ,对回热量在吸附制冷系统中的影响进行了理论分析 。 Suction line heat exchanger is used for inner heat recovery with which heat is exchanged between condensed refrigerant liquid and evaporated refrigerant gas. In a general refrigeration system, inner heat recovery is helpful to increase cooling output, but it may lower the performance of vapor compressing refrigeration system sometimes also. In adsorption refrigeration cycle, inner heat recovery is beneficial to improve the cycle performance in terms of quantitative thermodynamic analysis. Although inner heat recovery decreases the cooling effect to adsorbent from evaporated gas, this does not offset the tendency of increasing cooling output. Some experimental data also verify that the precooler recovers some heat from the evaporated gas and help the evaporator to provide much more cooling capacity. Therefore, in adsorption refrigeration system, the precooler for inner heat recovery is an effective element to improve its performance, especially in the situation that condensing temperature is far higher than evaporating temperature.
出处 《化工学报》 EI CAS CSCD 北大核心 2003年第9期1201-1204,共4页 CIESC Journal
基金 国家自然科学基金资助项目 (No 5 0 10 60 0 6) 国家重点基础研究发展规划 ( 973 )项目 (No G2 0 0 0 0 2 63 0 9)~~
关键词 吸附 制冷 气液回热 循环 Adsorption Evaporative cooling systems Heat exchangers Performance Regenerators Thermal cycling
  • 相关文献

参考文献5

  • 1Turner L.[D].London:Warick University,1992.
  • 2吴业正 韩宝琦 et a1.制冷原理与设备[M].Xi’an:Xi’an Jiaotong University Press,1990..
  • 3曲天非,王如竹,王文.采用回质回热的活性炭-氨吸附制冷循环性能[J].化工学报,2001,52(4):301-305. 被引量:3
  • 4Pons M, Poyelle F. Adsorptive Machines with Advanced Cycles for Heat Pumping or Cooling Applications. Int J of Refrigeration, 1999, 22:27-37.
  • 5Pita E G. Refrigeration Principles and Systems, New York: John Wiley & Sons Inc, 1984.

二级参考文献3

  • 1Wang R Z,Proc 1999 Int Sorption Heat Pump Conference,1999年,631页
  • 2Teng Y,Applied Thermal Engineering,1997年,17卷,4期,327页
  • 3Szarzynski S,Int J Refrig,1997年,20卷,6期,390页

共引文献2

同被引文献18

  • 1彭文博,漆虹,陈纲领,邹琳玲,邢卫红,徐南平.19通道多孔陶瓷膜渗透过程的CFD模拟[J].化工学报,2007,58(8):2021-2026. 被引量:30
  • 2Pabby A K, Rizvi S S H, Sastre A M. Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications [M]. New York: CRC Press, 2008.
  • 3Gestel T V, Vandecasteele C, Buekenhoudt A, Dotremontb C, Luytenb J, Leysenb R, Bruggena B V, Maesc G. Alumina and titania multilayer membranes for nanofiltration: preparation, characterization and chemical stability [J]. J. Membr. Sci., 2002, 207: 73-89.
  • 4Peng Wenbo (彭文博). Optimizating ceramic membrane geometry by computational fluid dynamics [D]. Nanjing: Nanjing University of Technology, 2008.
  • 5Nassehi V. Modelling of combined Navier-Stokes and Darcy flows in crossflow membrane filtration [J]. Chem. Eng. Sci., 1998, 53: 1253-1265.
  • 6Damak K, Ayadi A, Zeghmati B, Schmitz P. A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes [J]. Desalination, 2004, 161: 67-77.
  • 7Belfort G. Membrane modules: comparison of different configurations using fluid mechanics [J]. J. Membr. Sci., 1988, 35: 245-270.
  • 8Darcovich K, Dal-Cin M M, Ballevre S, Wavelet J P. CFD-assisted thin channel membrane characterization module design [J]. J. Membr. Sci., 1997, 124 (2): 181-193.
  • 9Tarabara V V, Wiesner M R. Computational fluid dynamics modeling of the flow in a laboratory membrane filtration cell operated at low recoveries [J]. Chem. Eng. Sci., 2003, 58: 239-246.
  • 10Kozeny J. über kapillare Leitung des Wassers im Boden[J]. Sitzungsber. Wien. Akad. Wiss., 1927, 136 (2a): 271-306.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部