期刊文献+

掺铒GaN薄膜的背散射沟道分析和光致发光研究 被引量:6

RBS/channeling study and photoluminscence properties of Er-implanted GaN
原文传递
导出
摘要 采用背散射 (RBS) 沟道 (channeling)分析和傅里叶变换红外光谱 (FT IR)研究了掺铒GaN薄膜的晶体结构和光致发光 (PL)特性 .背散射 沟道分析结果表明 :随退火温度的升高 ,薄膜中辐照损伤减少 ;但当退火温度达到1 0 0 0℃ ,薄膜中的缺陷又明显增加 .Er浓度随注入深度呈现高斯分布 .通过沿GaN的 <0 0 0 1 >轴方向的沟道分析 ,对于 90 0℃ ,30min退火的GaN :Er样品 ,Er在晶格中的替位率约 76 % .光谱研究表明 :随退火温度的升高 ,室温下样品的红外PL峰强度增加 ;但是当退火温度达到 1 0 0 0℃ ,样品的PL峰强度明显下降 ;测量温度从 1 5K变化到 30 0K时 ,样品 (90 0℃ ,30min退火的GaN :Er)的 1 540nm处PL温度猝灭为 30 % . The Raman back scattering/channeling technique was used to analyze the damage recovery at different annealing temperatures and to determine the lattice location of the Er-implanted GaN samples. A better damage recovery was observed with increasing annealing temperature below 1000degreesC, but a complete recovery of the implantation damage cannot be achieved. For a sample annealed for at 900degreesC 30 min the Er and Ga angular scans across the <0001> axis was measured indicating that about 76% of Er ions occupies substitutional sites. Moreover, the photoluminscence (PL) properties of Er-implanted GaN thin films have been also studied. The experimental results indicate that those samples annealed at a higher temperature below 1000degreesC had a stronger 1539nm PL intensity. The thermal quenching of PL intensity for samples annealed at 900degreesC measured at temperatures from 15K to 300K is 30%.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2003年第10期2558-2562,共5页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :6 0 176 0 2 5)资助的课题~~
关键词 掺铒氮化镓薄膜 GAN 离子束分析 光致发光 背散射/沟道分析 晶体结构 GaN erbium Raman back scattering photoluminscence
  • 相关文献

参考文献2

二级参考文献13

  • 1Torvik J T, Feuerstein R J, Pankove J I, et al. Electroluminescence from erbium and oxygen coimplanted GaN [J]. Applied Physics Letter, 1996, 69(14): 2098.
  • 2Steckl A J, Garter M, Birkhahn R, et al. Green electroluminescence from Er-doped GaN Schottky barrier diodes [J]. Applied Physics Letter, 1998, 73(17): 2450.
  • 3Chen W D, Liang J J, Hsu C C. The influence of oxygen content on photoluminescence from Er-doped SiOx [J]. Mat. Res. Soc. Symp. Proc., 1999, 562: 107.
  • 4Tang Y S, Heasman K C, Gillin W P, et al. Characteristics of rare-earth element erbium implanted in silicon [J]. Applied Physics Letter, 1989, 55(5): 432.
  • 5Wilson R G, Schwartz R N, Abernathy C R, et al. 1.54 μm photoluminescence from Er-implanted GaN and AlN [J]. Applied Physics Letter, 1994, 65(8): 992.
  • 6Alves E, Silva M F da, Soares J C, et al. Ion beam and photoluminescence studies of Er and O implanted GaN [J]. Nuclear Instruments and Methods in Physics Research B, 1999, 147: 383.
  • 7Birkhahn R, Hudgins R, Lee D. Growth and morphology of Er-doped GaN on sapphire and hydride vapor phase epitaxy substrates [J]. J. Vac. Sci. Technol. B, 1999, 17(3): 1195.
  • 8Torvik J T, Feuerstein R J, Qiu C H, et al. Photoluminescence excitation measurements on erbium implanted GaN [J]. Journal Applied Physics, 1997, 82(4): 1824.
  • 9Porowski S, Grzgory I. In Properties of Group III Nitrides [M]. Ed. By J. H.Edgar, IEE EMIS Datarev. Series, No.11 (Inspec, London 1994) ps. 71,76,83.
  • 10Mackenzie J Devin, Abernathy C R, Pearton S J, et al. Er doping of GaN during growth by metalorganic molecular beam epitaxy [J]. Applied Physics Letter, 1998, 72(21): 2710.

共引文献4

同被引文献104

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部