期刊文献+

用面力边界积分方程求解断裂力学J积分

Computation of J integral based on traction boundary integral equation
下载PDF
导出
摘要 证明面力边界积分方程被积函数的散度等于零 ,应用 Stokes公式 ,对平面线弹性问题 ,将面力边界积分的求解转化为边界点的位移势函数的点值计算 .应用边界积分方程的求解结果 ,推导出 J积分亦可表示为边界点的积分势函数的点值计算 ,无需进行数值积分 。 Based on testifying the integrand divergence free property of the traction boundary integral equation and Stokes' theorem, the computation of traction boundary integral equation can be transformed into the evaluation of the displacement potential function on the boundary points. As the same way, applying the results of traction boundary integral equation, J integral can be also transformed into the computation of the J integral potential function at the points. No numerical integrals are needed in the whole calculation procedure. The numerical examples presented show the scheme has a excellent accuracy.
出处 《计算力学学报》 CAS CSCD 北大核心 2003年第5期583-586,605,共5页 Chinese Journal of Computational Mechanics
基金 浙江省自然科学基金 ( 5 0 115 0 )资助项目
关键词 面力边界积分方程 断裂力学 J积分 位移势函数 点值计算 面线弹性 边界点 积分势函数 boundary integral equation fracture mechanics J integral
  • 相关文献

参考文献11

  • 1胡海昌,丁皓江,何文军.弹性力学平面问题的等价的边界积分方程[J].中国科学(A辑),1996,26(11):1009-1014. 被引量:5
  • 2周慎杰,曹志远,孙树勋.弹性力学问题解唯一的边界积分方程[J].应用数学和力学,1999,20(10):1051-1056. 被引量:3
  • 3陈颂英,周慎杰,孙树勋.一种新型的边界元法——边界轮廓法[J].计算力学学报,1998,15(2):167-173. 被引量:6
  • 4孙树勋.弹性力学教程[M].济南:山东大学出版社,1996..
  • 5Rizzo F J. An integral equation approach to boundary value problems of classical elastostatics[J]. Qly Appl Math, 1967,25:83-95.
  • 6Lutz E D. Syetematic derivation of contour integration formulae for Laplace and elastostatic gradient[J]. BIEs Comput Mech,1994,14:339-353.
  • 7Nagarajan A, Lutz E D, Mukherjee S. A novel boundary element method for linear elasticity with no numerical integration for 2-D and line integrals for 3-D problems[J]. ASME J Appl Mech, 1994,61:264-269.
  • 8Nagarajan A, Mukherjee S, Lutz ED. The boundary contour method for three dimensional linear elasticity[J]. ASME J Appl Mech, 1996,63:278-286.
  • 9Chen S Y, Tang W X, Zhou S J, Leng X, Zheng W. Evaluation of J integrals and stress intensity factors in a two dimensional quadratic boundary contour method [J]. Commun Numer Meth Engng,1999,15: 91-100.
  • 10Blandford G E, Ingraffea A R, Liggett J A. Two dimensional stress intensity factor computations using the boundary element method [J]. Int J Numer Meth Engng , 1981,17 :387-404.

二级参考文献13

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部