摘要
设Z是整数环,2≤n∈Z是一个整数,p是一个奇素数.Z[X]是整系数一多元项式环,J∪Z[X]是剩余类环Z/pnZ的化零理想.作者用解析的观点首先证明了剩余类环Z/pnZ上的任一置换多项式的逆映射也是Z/pnZ上的置换多项式,从而从解析的角度证明了Z/pnZ上的置换多项式对于映射的复合运算及对模J的约化作成一个群.
Let Z be the ring of integers,n∈Z with n ≥2 and p be an odd prime.Let Z be the ring of polynomials over Z and J be the ideal of Z which annihilates the residue class ring Z/pnZ.By analytic viewpoint, the author gives a proof of the result that the inverse of any permutation polynomial over Z/pnZ can be represented by a polynomial and so all permutation polynomials over Z/pnZ form a group according to the operation of composite of maps and reduction mod J.
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第5期835-837,共3页
Journal of Sichuan University(Natural Science Edition)
关键词
剩余类环
置换多项式
逆映射
residue class ring
permutation polynomial
inverse map