期刊文献+

一种改进的多小波分解重构算法及其应用 被引量:3

An improved decomposition and reconstruction algorithm of multiwavelet and its application
下载PDF
导出
摘要 在论述多小波基本理论及其分解重构算法的基础上,基于多小波分解重构算法的扩展与正交多小波的对称/反对称特性,提出了一种改进的分解重构算法,并以SA4多小波为例,对电力系统高压输电线故障暂态信号进行分解与重构,证明了其有效性。 The basic theory of multiwavelets and its decomposition & reconstruction algorithm are introduced and discussed in this paper. Based on the expansion of the decomposition & reconstruction algorithm and the symmetry/asymmetry property of the orthogonal multiwavelet, the improved decomposition & reconstruction algorithm is proposed. SA4 multiwavelets are taken as an example. Transient fauet signals on the high voltage transmission lines in the power system are decomposed and reconstructed, thus proving the effectiveness of the improved algorithm.
出处 《铁道学报》 EI CAS CSCD 北大核心 2003年第5期45-49,共5页 Journal of the China Railway Society
基金 国家自然科学基金资助(59977019) 四川省应用基础研究项目资助(02GY029-039)
关键词 信号处理 多小波 分解与重构 算法 signal processing multiwavelet decomposition and reconstruction algorithm
  • 相关文献

参考文献7

  • 1Daubechies I. Ten Lectures on Wavelets, CBMS-Conference Lecture Notes [M]. SIAM Philadelphia, V. 61,1992.
  • 2Goodman T N T, Lee S L. Wavelets of multiplicity [J].Trans. Amer. Math. Soc. 1994, 342: 307-324.
  • 3Strang G. Eigenvalues of ( ↓ 2) H and convergence of cascade algorithm [J]. IEEE Trans. on Signal Processing,1996, 44(1): 233-238.
  • 4Xia X G, Geronimo J S, Hardin D P, et al. Design of prefilters for discrete multiwavelet transforms [J]. IEEE Trans. on Signal Processing, 1996, 44(1): 25-34.
  • 5Chui C K, Lian J A. A study of orthonormal multi-wavelets [J]. Appl. Numer. Math, 1996, 20(3): 273-298.
  • 6Jiang Q T. Orthogonal multiwavelet with optimum timefrequency resolution [J]. IEEE Trans. on Signal Processing, 1998, 46 (4): 830-844.
  • 7Tham J Y, Shen L, Lee S L, et al. A general approach for analysis and application discrete multiwavelet transforms[J]. IEEE Trans. on Signal Processing, 2000, 48 (2):457-464.

同被引文献31

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部