期刊文献+

平衡冷冻后红细胞胞内未冻水的状态

The States of Unfrozen Water in Erythrocytes After Equilibrium Freezing
下载PDF
导出
摘要 基于Boyle Van tHoff关系设计了 2种独立的实验方案 ,研究了红细胞内束缚水的状态 .第一种方案使用电子粒子计数仪 (EPC)测定了室温下在不同浓度的NaCl溶液中取得渗透平衡的红细胞的体积 (V) ,其中包括红细胞的等渗体积V0 (与 0 .9%的NaCl溶液取得渗透平衡的红细胞体积 ) .第二种方案使用差示扫描量热仪(DSC)测定了不同压积比的红细胞悬液慢速冷冻的放热量 .通过理论模型计算 ,进一步得到红细胞的最终平衡体积 (Vf) .平衡冷冻的最终体积与细胞内非渗透性体积(Vb)存在差别 ,这一差别被认为是细胞内束缚水的体积 .实验结果表明 :(1)两种实验方法等效 ;(2 )平衡冷冻后胞内几乎没有自由水 ,亦即红细胞内束缚水只有一种状态 ,为结合水 . Two independent experimental approaches are coupled to check the state of unfrozen water within RBCs. One is to an use electronic particle counter (EPC) (Multisizer TM 3, Beckman Coulter Inc., USA) at ambient temperature to measure the final osmotic equilibrium volume (V f) of RBCs exposed to solutions of different concentrations, and the other is to use differential scanning calorimeter (DSC) at subzero temperature to get the final stable cell volume (V f) by slowly freezing samples of different hemocrits. The isotonic volume, V 0, is obtained under the isotonic condition by EPC. The difference between the equilibrium volume after freezing and the osmotic inactive volume (V f-V b) is taken as the volume of bulk water left in cells. The results of the experiments show that (1) the two methods are equivalent, and (2) there is nearly no bulk water left in cells after equilibrium freezing, that is, the unfrozen water in RBCs after equilibrium freezing exists in only one state, i.e., bound water.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2003年第5期573-578,共6页 JUSTC
基金 中国科学院"百人计划"(2 0 0 0 -2 0 0 3 ) 国家自然科学基金 (No.50 10 60 16) 教育部回国基金 (2 0 0 0 -2 0 0 2 ) 安徽省自然科学基金 (Nos.0 0 0 4752 0 0 3 0 43 717)资助项目
关键词 结合水 红细胞 DSC 慢速冷冻 胞内水 bound water red blood cell DSC freezing intracellular water
  • 相关文献

参考文献8

  • 1罗大为,高大勇,程曙霞,何立群.在三元溶液低温相变过程中细胞反应的数值模拟(英文)[J].中国科学技术大学学报,2003,33(1):84-91. 被引量:1
  • 2Cooke R, Kuntz I D. The properties of water in biological systems [A]. Annu. Rev. Biophys.Bioeng. 3 [C]. Ed. Mullins L J. California:Annual Reviews Inc. , 1974. 95-126.
  • 3Cooke R, Wien R. The state of water in muscle tissue as determined by proton nuclear magnetic resonance [J]. Biophys. J, 1971, 11:1002-17.
  • 4Ramachandra V D, Debopam R and John C B.Measurement of water transport during freezing in cell suspensions using differential scanning calorimetry [J]. Cryobiology, 1998, 36: 124-155.
  • 5Luo Da-wei, Han Xu, He Li-qun, et al. A modified differential scanning calorimetry for determination of cell volumetric change during the freezing process [ J ]. Cryo-Letters, 2002,23 : 229-236.
  • 6Farrant J and Woolgar A E. Human red cells under hypertonic conditions; a model system for investigating freezing damage. I. Sodium chloride [J]. Cryobiology, 1972, 9: 9-15.
  • 7Wolfe J, Bryant G and Koster K L. What is ‘unfreezable water', how unfreezable is it and how much is there? [J]. Cryo-Letters, 2002,23 : 157-166.
  • 8Franks F. Unfrozen water: yes; unfreezable water: hardy; bound water: certainly not [ J ].Cryo-Letters, 1986, 7 : 207.

二级参考文献13

  • 1[1]Mazur P. Freezing of living cells: Mechanism and implications [J]. Am. J. Physiol. Cell Physiol. 1984, 247 (16): C125-142.
  • 2[2]Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing [ J]. J. Gen. Physiol.1963, 47: 347-364.
  • 3[3]Toner M, Cravalho E G. Thermodynamics and kinetics of intracellular ice formation during freezing of biolog8ical cells [J]. J. Appl.Phys. 1990, 67: 1582-1594.
  • 4[4]Karlsson J O M, Cravalho E G. A model of diffusion-limited ice growth inside biological cells during freezing[J]. J. Appl. Phys. 1994,75: 4442-4455.
  • 5[5]Pitt R E, Steponkus P L. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts [J].Cryobiology, 1989, 26: 44-63.
  • 6[6]Toner M, Cravalho E G, Karel M. Cellular response of mouse oocytes to freezing stress: Prediction of intracellular ice formation [J]. J. Biomechanical Engineering, 1993, 115: 169-173.
  • 7[7]Toner M, Ronald G, et al. Transport phenomena during freezing of isolated hepatocytes [J].AIChE Journal , 1992, 38: 1512-1522.
  • 8[8]Mansoori G A. Kinetics of water loss from cells at subzero centigrade temperatures [J]. Cryobiology, 1975,12: 34-45.
  • 9[9]Viskanta R, Bianchi M V A, et al. Solidification processes of solutions [ J ]. Cryobiology ,1997, 34: 348-362.
  • 10[10]Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in a binary solid-liquid phase change system: Ⅰ. Modal formulation[J]. Int. J. Heat Mass Transfer, 1987, 30:2161- 2170.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部