期刊文献+

分次三角矩阵环的性质 被引量:3

Properties of Graded Triangular Matrix Rings
下载PDF
导出
摘要 给定两个分次环 R = x∈ MRx,A = x∈ MAx和一个分次双模 V =RVA= x∈ MVx,可以得到一个分次三角矩阵环 T=R V0 A = x∈ MRx Vx0 Ax.对分次强π正则性、弱分次直有限性和与分次 J根密切相关的几个分次环性质 ,讨论了 T与 R,A之间的性质关系 . Given two graded rings R=x∈MR_x, A=x∈MA_x and one graded bimodule V=_RV_A=x∈MV_x we can obtain a graded trigangular matrix ring T=RV0A=x∈MR_xV_x0A_x. In this paper are discussed the property relations among R,A and T for graded strongly π-regularity, weakly graded direct finiteness and some graded ring properties in close relationship with graded J-radical.
作者 任艳丽 王尧
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2003年第4期458-462,共5页 Journal of Jilin University:Science Edition
基金 辽宁省教育厅自然科学研究基金 (批准号 :2 0 2 42 0 10 5 1)
关键词 分次三角矩阵环 分次强π正则性 分次直有限性 分次JACOBSON根 分次环 分次模 graded triangular matrix ring graded strongly π-regularity graded direct finiteness graded Jacobson radical
  • 相关文献

参考文献6

  • 1王尧.分次环的分次Jacobson根[J].数学学报(中文版),1998,41(2):347-354. 被引量:31
  • 2王尧,任艳丽.分次环的Block分解[J].吉林大学学报(理学版),2002,40(2):131-134. 被引量:1
  • 3Karpilovsky G. The Jacobson Radical of Classical Rings[M]. New York: John Wiley & Sons Inc, 1991. 159-192.
  • 4Lam T Y. A First Course in Noncommutative Rings [M]. GTM 131. New York: Springer-Verleg, 1996. 51-380.
  • 5Hartwing R E, Luh J. On Finite Regular Rings[J]. Pacific J Math, 1977, 69: 73-95.
  • 6WangYao(王尧).Graded Jacobson Radical of Graded Rings(分次环的分次Jacobson根).Actn Mathematica Sinica(数学学报),1998,41(2):347-354.

二级参考文献7

共引文献30

同被引文献13

  • 1王尧,任艳丽.分次非奇异三角矩阵环[J].吉林大学学报(理学版),2004,42(4):503-507. 被引量:2
  • 2[1]NASTASESCU C,OYSTAEYEN F VAN.Graded Ring Theory[M].Math Library vol.28,Amsterdam:North-Holland Publishing Company,1982.
  • 3[4]ANDERSON F W,FULLER K R.Rings and Categories of Modules[M].GTM 13.Berlin:Springer-verlag,1974.
  • 4[5]熊金淹.环论[M].武汉:武汉大学出版社,1993.
  • 5[6]HUANYIN CHEN.On the Structure of Triangular Matrix Rings[J].J Nanjing Univ Math Biquarterly,1999,16(2):153-157.
  • 6[7]GOODEARL K R.Ring Theory-Nonsingular Rings and Modules[M].New York and Basel:Marcel Dekker,Inc.1976.
  • 7[8]KARPILOVSKY G.The Jacobson Radical of Classical Rings[M].New york:John Wiley & Sons Inc,1991.
  • 8Nastasescu C, Van Oystaeyen F. Graded Ring Theory [M]. Amsterdam:North-Holland,1982.
  • 9Resco R. Radicals of finite normalizing extensions [J]. Comm. Algebra,1981,9(7):713-725.
  • 10王尧.分次环的分次Jacobson根[J].数学学报(中文版),1998,41(2):347-354. 被引量:31

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部