摘要
提出了一种滤除加性脉冲噪声的模糊加权平均滤波器 ,其加权系数是一个携带了原图像信息的隶属度函数 ,同时该滤波器还根据图像区域特性差异采用了不同的滤波方法 .新的滤波器优点是简单快速 ,和 neuro-fuzzy滤波器相比又无需训练学习时间 .实验表明该方法滤波效果优于传统的滤波器和其他模糊滤波器 .
A weighted fuzzy mean filter for the removal of additive impulse noise is proposed in this paper.The weighted coefficients are membership function that carries information of the original image.Meanwhile,the filter adopts different method of image restoration in the light of divergence of image regional character.Similar to conventional filters,the new filter has the benefits of being simple and quick.Relative to neuron-fuzzy filters,it doesn't need training and learning time.Experimental result shows that the filter gives superior performance compared with conventional filters and other fuzzy filters.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第5期44-47,共4页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金资助项目 ( 69972 0 41 )
关键词
模糊加权平均滤波器
高斯噪声
区域信息
图像恢复
模糊参数
weighted fuzzy mean filter
gauss noise
region information
image restoration
fuzzy parameter