期刊文献+

一种基于互相关神经网络的声呐盲波束形成方法研究 被引量:1

A sonar blind beamforming method based on a cross correlation neural network
下载PDF
导出
摘要 针对水声环境和水声信号的特点,提出了一种基于神经网络的声呐盲波束形成算法。该方法利用水声信号的循环平稳特性把波束形成权向量的求解问题转化为阵列接收信号互相关函数的奇异值分解问题;引入一种互相关神经网络求解阵列接收信号相关函数的奇异值,从而减小了运算的代价,可高效实现盲波束形成。提出的改进互耦Hebbian学习规则有效地提高了神经网络权值的更新速度,为问题的实时求解提供了有效的途径。该方法还能抑制噪声和干扰的影响,表现出较强的顽健性。仿真实验验证了算法的正确性。 A blind beamforming algorithm based on a neural network is presented according to the characteristic of underwater acoustic environment and signal. This method transforms the question of estimating beamforming weight vectors into the one of computing the SVD of the cross correlation matrix of array input signals and their frequency shift signals. A cross correlation neural network is introduced to compute the SVD of the cross correlation matrix so as to reduce the computational complexity and carry out the blind beamforming more efficiently. The improved cross-coupled Hebbian learning rule presented in this paper can accelerate convergence rate of the weight vectors. Therefore, it is more promising in the practical use. This method can restrain noise and interference. Simulation proves its correctness.
出处 《通信学报》 EI CSCD 北大核心 2003年第10期108-113,共6页 Journal on Communications
基金 国防科技重点实验室基金资助项目(2000JS23.2.1) 西北工业大学博士论文创新基金资助项目(200204)
关键词 循环平稳 盲波束形成 神经网络 仿真 cyclostationarity blind beamforming neural network simulation
  • 相关文献

参考文献9

  • 1陈宇欣,何振亚.基于周期平稳信号特性的神经网络波束形成技术[J].应用科学学报,1998,16(4):403-408. 被引量:4
  • 2KUNG S Y, Diamantaras K L. A neural network learning algorithm for adaptive principal component extraction (APEX)[A], Proc ICASSP[C]. 1990(4). 861-864.
  • 3CAPON J. High resolution frequency-wave number spectrum analysis[J]. Proc IEEE, 1969, 57(8): 1408-1418.
  • 4SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans AP, 1986,34(3): 276-280.
  • 5DOGAN M C, MENDEL J M. Cumulant-based blind optimum beamforming[J]. IEEE Trans ASE, 1994,30(3): 722-741.
  • 6WU Q, WONG K M. Blind adaptive beamforming for cyclostationary signals[J], IEEE Trans SP, 1996,44(11): 2768-2779.
  • 7HE Z Y, CHEN Y X. Robust blind beamforming using neural network[J], lEE Proc-Radar, Sonar Navig, 2000, 147(1): 41.46.
  • 8DIAMANTARAS K L, KUNG S Y. Cross-correlation neural network model[J]. IEEE Trans SP, 1994, 42(11): 3218-3223.
  • 9GARDNER W A. Statistical Spectral Analysis: A Nonprobabilistic Theory[D]. Englewood Cliffs, NJ: Prentice-Hall, 1987.

二级参考文献1

  • 1Wu Q,Proc Fifth int Conf Wireless Commun,1993年,325~334页

共引文献3

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部