期刊文献+

基于目标驱动的多层MLLR自适应算法

Multi-Layer Structure MLLR Adaptation Algorithm Based on Target-Driven
下载PDF
导出
摘要 本文在对语音识别中基于自适应回归树的极大似然线性变换 (MLLR)模型自适应算法深刻分析的基础上 ,提出了一种基于目标驱动的多层MLLR自适应 (TMLLR)算法。这种算法基于目标驱动的原则 ,引入反馈机制 ,根据目标函数似然概率的增加来动态决定MLLR变换的变换类 ,大大提高了系统的识别率。并且由于这种算法的特殊多层结构 ,减少了许多中间的冗余计算 ,算法在具有较高的自适应精度的同时还具有较快的自适应速度。在有监督自适应实验中 ,经过此算法自适应后的系统识别率比基于自适应回归树的MLLR算法自适应后系统的误识率降低了 10 % ,自适应速度也比基于自适应回归树的MLLR算法快近一倍。 In this paper, a new algorithm called Target Driven based multiple layer maximum likelihood linear regression (TMLLR) is proposed for model adaptation in speech recognition. The algorithm can be regarded as the improvement of maximum likelihood linear regression (MLLR) using the generation of regression class trees for model adaptation. Different from conventional MLLR, the regression classes of TMLLR are generated dynamically based on increment of target function and a multi layer feedback mechanism. Because of the special multi layer structure of TMLLR, some redundant computing cost can be reduced, which caused much faster adaptation speed. The target driven strategy is aimed at increasing the likelihood probability, which is same to measure of speech recognition, so a higher recognition accuracy of the system can be achieved. In comparison with the conventional MLLR using the generation of regression class tree, TMLLR achieved a further word error rate reduction by 10% and had only about half computational time consuming in supervised adaptation experiments.
出处 《中文信息学报》 CSCD 北大核心 2003年第6期39-46,共8页 Journal of Chinese Information Processing
基金 973项目资助(G19980 30 0 5 0 4 ) 教育部留学归国人员启动基金资助
关键词 计算机应用 中文信息处理 语音识别 模型自适应 自适应回归树 极大似然线性变换 computer application Chinese information processing speech recognition model adaptation regression class trees maximum likelihood linear regression (MLLR)
  • 相关文献

参考文献8

  • 1高升,徐波,黄泰翼.基于决策树的汉语三音子模型[J].声学学报,2000,25(6):504-509. 被引量:20
  • 2Gauvain J L, Lee C H. Maximum A Posteriori Estimation for Multivariate Gattssian Mixture Observations of Markov Chains[J ]. In: IEEE Trans. On Speech and Audio Processing, 1994.2(2):291 - 298.
  • 3Leggetter C J, Woodland P C. Maximum likeliblood linear regression for speaker Adaptation of continuous density HMMs[J]. In: Computer Speech and Language, 1995, 9:171 - 186.
  • 4Leggetter C J, Wcxxtland P C, Flexible speaker adaptation using maximum likelihood linear Regression[A]. In: Proceedings Eurospeech. 1995:1155 - 1158.
  • 5Gales M J F. The Generation and Use of Regression Class Trees for MLLR Adaptation[ R]. In: Technical Report CUED/F-INFENG/TR. 181. Cambridge University Engineering Department, 1994, June.
  • 6Jia Lei, Xu 13o. A Novel Target-Driven MLLR Adaptation Algorithm with Multi-Layer Structure[R].In: Proceedings Eurospeech. 2001: 1225-1229.
  • 7Young S J, Odell J J, Woodland P C. The Use of State Tying in Continuous Speech Recognition[R].In. Proceedings Eurospeech. 1993:2203-2206.
  • 8Chmgrong Li, Jingdong Chert and Bo Xu. Regression Class Selection and Speaker Adaptation with MLLR in Mandarin Continuous Speech Recognition[A]. In: Proceedings Eurospeech. 1999: 2503-2506.

二级参考文献6

  • 1林焘 王理嘉.语音学教程[M].北京:北京大学出版社,..
  • 2徐波 张亮 等.基于决策树方法的语境有关HMM建模.第八届全国声学学术会议[M].,1998.421-424.
  • 3Hwang Meiyuh,IEEE Trans Speech Audio Processing,1998年,4卷,6期,412页
  • 4徐波,第八届全国声学学术会议,1998年,421页
  • 5Ma Bin,ICASSP ’96,USA,1996年
  • 6林杰,语音学教程

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部