摘要
文中提出一种基于物体形态及受约束结构的三维物体建模方法,该方法利用具有透视不变性的三维结构来表达物体的各个形态。利用该表达方法可以使机器视觉系统在用单幅灰度图像识别物体时,在模型索引阶段避开求解物体位姿、摄像机参数、特征对应等复杂问题,从而实现先索引后匹配的识别策略,提高识别物体的实时性。文中首先论述了透视不变性和具有透视不变性的受约束结构的基本概念;其次,给出了用受约束结构进行三维物体建模的一般方法和应用实例;最后,指出了这种方法的不足和进一步的研究方向。
In this paper a modeling method based on aspect of 3D object and constrained structure is presented. The method makes use of constrained 3D structures with the property of perspective invariance to represent aspects of 3D object. By using this representation, the machine vision system could avoid the computing of object pose, camera calibration and feature correspondence in the indexing phase of recognizing 3D object from a single view, therefore, the strategy of indexing before matching can be realized and high realtime recognition efficiency can be obtained. At first, the basic concepts of perspective invariance and constrained structure are discussed. Then, a general way using such constrained structures to represent 3D object is given, and an application of it is also presented. Finally, the weakness of this modeling method as well as the future research is pointed out.
出处
《计算机应用》
CSCD
北大核心
2003年第11期1-3,共3页
journal of Computer Applications
基金
国家自然科学基金资助项目(60141002)
国家"十五"国防预研资助项目(413160103)
南昌航院测控中心开放实验室基金资助项目
关键词
3D物体识别
3D物体建模
透视不变性
受约束结构
形态
3D object recognition
3D object modeling
perspective invariance
constrained structure
aspect