期刊文献+

基于形态及受约束结构的三维物体建模方法

3D Object Modeling Based on Aspect and Constrained Structure
下载PDF
导出
摘要 文中提出一种基于物体形态及受约束结构的三维物体建模方法,该方法利用具有透视不变性的三维结构来表达物体的各个形态。利用该表达方法可以使机器视觉系统在用单幅灰度图像识别物体时,在模型索引阶段避开求解物体位姿、摄像机参数、特征对应等复杂问题,从而实现先索引后匹配的识别策略,提高识别物体的实时性。文中首先论述了透视不变性和具有透视不变性的受约束结构的基本概念;其次,给出了用受约束结构进行三维物体建模的一般方法和应用实例;最后,指出了这种方法的不足和进一步的研究方向。 In this paper a modeling method based on aspect of 3D object and constrained structure is presented. The method makes use of constrained 3D structures with the property of perspective invariance to represent aspects of 3D object. By using this representation, the machine vision system could avoid the computing of object pose, camera calibration and feature correspondence in the indexing phase of recognizing 3D object from a single view, therefore, the strategy of indexing before matching can be realized and high realtime recognition efficiency can be obtained. At first, the basic concepts of perspective invariance and constrained structure are discussed. Then, a general way using such constrained structures to represent 3D object is given, and an application of it is also presented. Finally, the weakness of this modeling method as well as the future research is pointed out.
作者 陈柘 赵荣椿
出处 《计算机应用》 CSCD 北大核心 2003年第11期1-3,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60141002) 国家"十五"国防预研资助项目(413160103) 南昌航院测控中心开放实验室基金资助项目
关键词 3D物体识别 3D物体建模 透视不变性 受约束结构 形态 3D object recognition 3D object modeling perspective invariance constrained structure aspect
  • 相关文献

参考文献9

  • 1李庆,周曼丽,柳健.三维物体识别研究进展[J].中国图象图形学报(A辑),2000,5(12):985-993. 被引量:29
  • 2曾接贤,鲁宇明,黎明,储珺.三维物体的形态图表达方法[J].中国图象图形学报(A辑),2002,7(9):906-910. 被引量:8
  • 3Pope AR. Model-basod object recognition a survey of recent research[R]. Vancouver. University of British Columbia, 1994.
  • 4Burns JB, Weiss RS, Riseman EM. The non-existence of generalcase view-invariants[A]. Mundy J L, Zissennan A. Geometric Invariance in Computer Vision[C]. Cambridge, MA, USA: MIT Press, 1992. 120-131.
  • 5Bothwell CA, Forsyth DA, Zisserman A, et al. Extracting projective structure from single perspective views of 3D point sets[A]. Proceedings of the 4th International Conference on Computer Vision[C]. Berlin, Germany, 1993. 573-582.
  • 6Zhu Y, Seneviratne LD, Earles SWE. A new structure of invariant for 3D point sets from a single view[A]. Prec. of 12th Intel. Conf.on Robotics and Automation[C]. Nagoya, Japan, 1995. 1726-1731.
  • 7Song BS, Lee KM, Lee SU. Model-based object recognition using geometric invariants of points and lines[J]. Computer Vision and Image Understanding, 2001, 84(3) : 361 -383.
  • 8Sugimoto A. Geometric invariant of noncoplanar lines in a single view[A]. Proceedings of International Conference on Pattern Recognition[C]. Jerusalem, Israel, 1994. 190-195.
  • 9Roh KS, Kweon IS. 3-D object lecognition using a new invariant relationship by single-view[J]. Pattern Recognition, 2000, 33(5):741 - 754.

二级参考文献53

  • 1Arnold VI 周燕华(译).突变理论[M].北京:高等教育出版社,1990..
  • 2马利庄 王荣良.计算机辅助几何造型技术及其应用[M].北京:科学出版社,1997..
  • 3Plantinga W H, Dyer C R. Visibility, occlusion, and the aspect graph, IJCV, 1990,5:137-160.
  • 4Huttenloeber D P, Ullman Sb. Recognizing solid objects by alignment with an image. IJCV, 1990,5(2):195-212.
  • 5Nagao K, Grimson W E L. Object reeognition by alignment asing invaziant proiections of planar surfaces, MIT: AI Lab Tech. Report, 1994.
  • 6Jurie F. Robust hypothesis verification: application to modelbased obiect recognition. PR, 1999, 32:1069-1081.
  • 7Gandhi T, Camps O. Robust feature selection for object recogntition using uncertain 2d image data. In:IEEE Conference on Computer Vision and Pattern Recognition Seattle Washington, 1994:281-287.
  • 8Yi J H, Chelberg D M. Model based 3D ohject recognition using bayesian undexing. CVIU, 1998,69(1):87-105.
  • 9Grimson W E L, Penes T L. Localizing overlapping paris by searching the interpretation tree, ITPAMI, 1991,13(9): 920-934.
  • 10Ikeuchi K, Hong K S, Determining linear shape change: Toward automatic generation of object recognition programs. CVGIP,1991,53(2): 154-170.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部