期刊文献+

小波包变换特征提取与表面肌电分类 被引量:6

Wavelet packet transformation feature extraction and surface EMG signal classification
下载PDF
导出
摘要 针对表面肌电(SEMG)的非平稳特性,提出采用小波包变换方法对其进行分类。分析了特征提取方法并采用小波包变换各频段能量构造特征矢量,经过学习矢量量化神经网络训练能够有效地从伸肌和屈肌采集的两道肌电信号中识别伸拳,展拳,腕内旋,腕外旋4种运动模式,平均识别率为94.5%。与其它时频分析方法比较,该方法不仅识别率高,鲁棒性好,也为其他非平稳生理信号分析提供了新手段。 A surface electromyography (SEMG) signal classification method based on wavelet packet transformation (WPT) is presented in this paper. The feature extraction method is analyzed. The energies in different frequency bands selected as robust feature vectors, four types of forearm movement are identified through learning vector quantization neural network. Compared with other time-frequency analysis method, this method has a higher identification rate and great potential in analyzing other non-stationary physiological signals.
出处 《医疗卫生装备》 CAS 2003年第9期7-8,10,共3页 Chinese Medical Equipment Journal
基金 国家自然科学基金项目(编号:60171006)。
关键词 小波包变换 表面肌电信号 学习矢量量化 时频分析 神经网络训练 wavelet packet transformation EMG time-frequency analysis learning vector quantization neural network pattern classification
  • 相关文献

参考文献8

  • 1杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001..
  • 2雷敏,王志中.基于学习矢量量化神经网络的表面肌电信号的模式分类研究[J].中国康复医学杂志,1999,14(6):264-266. 被引量:2
  • 3Khalil M, Duchene J. Uterine EMG Analysis: A Dynamic Ap proach for Change Detection and Classification [J]. IEEE Trans.Biomed Eng, 2000, 47(6): 748-756.
  • 4Coatrieux J L, Toulouse P, Rouvrais B, et al, Automatic classifi cation of Electromyographic Signals [J]. Elect & Clin Neurophysi,1983, 55:333-341.
  • 5Frigo C, Ferrarin M, Frasson W, et al. EMG singnals detection and processing for on-line control of functional electrical stimula tion [J]. Electromyogr & Kinesiol, 2000, 10:351-360.
  • 6Sparto P J, Parnianpour M, Barria E A, et al. Wavelet and Short Time Fourier Transform of Electromyography for Detection of Back Muscle Fatigue [J]. IEEE Trans. Rehabi Eng, 2000, 8(3): 433-436.
  • 7Coifman R R, Wiekerhanser M V.Entropy-based algorithms for best basis selection [J]. IEEE Trans, Inform Theory,1992,38:713-718.
  • 8Kohonen T. The "neural" Phonetic Typewriter(J]. IEEE Computer[J] 1988,21 (3): 11 - 22.

二级参考文献2

共引文献47

同被引文献53

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部