期刊文献+

非扩张映象带误差的Ishikawa迭代过程的收敛性(英文)

Convergence of the Ishikawa Iteration Processes with Errors for Nonexpansive Mappings
下载PDF
导出
摘要 设D是赋范空间X的一子集,T:DX是一非扩张映射.给定D中序列{xn}和两个实数序列{tn}和{sn}满足: 0≤tn≤t<1和∑∞n=1tn=∞; 0≤sn≤1和∑∞n=1sn<∞; xn+1=tnT(snTxn+(1-sn)xn+vn)+(1-tn)xn+un,n=1,2,3,…,其中{un}和{vn}是两个在X中的可合序列,且limn→∞t-1n‖un‖=0.证明了若{xn}有界,则limn→∞‖Txn-xn‖=0.并给出了保证{xn}弱和强收敛到T的不动点时,关于D,X和T的条件. Let D be a subset of a normed space X and T: DX be a nonexpansive mapping. Given a sequence {x_n} in D and two real sequences {t_n} and {s_n} satisfying ? 0≤t_n≤t<1 and ∑∞n=1t_n=∞; ? 0≤s_n≤1 and ∑∞n=1s_n<∞; ? x_(n+1)=t_nT(s_nTx_n+(1-s_n)x_n+v_n)+(1-t_n)x_n+u_n,n=1,2,3,..., where {u_n} and {v_n} are two summable sequences in X and (lim)n→∞ t^(-1)_n‖u_n‖=0. We prove that if {x_n} is bounded, then (lim)n→∞‖Tx_n-x_n‖=0. The conditions on D,X and T are shown which guarantee the weak and strong convergence of the Ishikawa iteration processes with errors to a fixed point of T.
作者 徐承璋
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第5期676-681,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 重庆市教委科学技术研究项目.
关键词 非扩张映象 ISHIKAWA迭代过程 收敛性 不动点 赋范空间 弱收敛 强收敛 normed space Ishikawa iterative process with errors nonexpansive mapping
  • 相关文献

参考文献12

  • 1Ishikawa S. Fixed Points By a New Iteration Method[J].Proc Amer Math Soc, 1974, 44:147 - 150.
  • 2Dotson W G. On the Mann Iterative Process[J]. Trans Amer Math Soc, 1970, 149:65 - 73.
  • 3Groetsch C W. A Note on Segmenting Mann Iterates[J]. J Math Anal Appl, 1972, 40: 369- 372.
  • 4Mann W R. Mean Value Methods in Iteration [J]. Proc Amer Math Soc, 1953, 4: 506-510.
  • 5Ishiimwa S. Fixed Points and Iterations of a Nonexpansive Mapping in a Banach Space [J]. Proc Amer Math Soc, 1976, 59 : 65 - 71.
  • 6Deng L. Convergence of the Ishikawa Iteration Process for Nonexpansive Mappings [J]. J Math Anal Appl, 1996, 199:769 - 775.
  • 7Emmanuele G. Convergence of the Mann-lshikawa Iteratlve Process for Nonexpansive Mappings[J].Nonliear Anal,1982,6:1135-1141
  • 8Reich S. Weak Convergence Theorem for Nonexpansive Mappings in Banach Spaces [J]. J Math Anal Appl, 1979, 67: 274- 276.
  • 9Veeramani P. On Some Fixed Point Theorems on Uniformly Convex Banach Spaces [J]. J Math Anal Appl, 1992, 167: 160- 166.
  • 10Liu Q H. Iterafive Sequences for Asymptotically Quasi-Nonexpansive Mapping with Error Mamber[J]. J Math Anal Appl, 2001, 259:18 - 24.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部