期刊文献+

Banach空间上有界可逆线性变换逆变换的结构

The Structure of Inverse Transformation for Linear Invertible Bounded Transformation on Banach Space
下载PDF
导出
摘要 Fillmore在[1]中得到一个定理:设A,T是Banach空间X上的线性变换,A有界,若Lat(A) Lat(T)且AT=TA,则T是A的多项式.在本文里,以此作为引理,讨论了Banach空间上可逆线性变换A在什么情况下,A-1可表示为A的多项式.本文最主要的结论是定理3.4:设X是Banach空间,A是X上的有界线性变换,且可逆,则A-1是A的多项式当且仅当A-1是A的局部多项式. It was shown by Fillmore in [1] that linear transformations A and T on a Banach space, with A bounded. If Lat(A)Lat(T) under what conditions and T commutes with A, then T is a polynominal in A. In this paper, we discuss the problem: discuss the problem that A-1 is a polynominal in A when A is a linear invertible transformation on a Banach space. The main result is that if A is a linear transformation on a Banach space with A bounded and invertible, then A-1 is a polynominal in A if and only if A-1 is locally a polynominal in A.
机构地区 景德镇陶瓷学院
出处 《大学数学》 2003年第5期79-81,共3页 College Mathematics
关键词 可逆线性变换 不变子空间 A的多项式 A的局部多项式 linear invertible transformation invariant subspace of transformation polinominal in A local polinominal in A
  • 相关文献

参考文献3

  • 1[1]Fillmore P A. On invariant linear manifolds[J]. Boc. Amer Math Soc, 1973, 41: 501-505.
  • 2[2]Brickman L and Fillmore P A. The invariant subspace lattice of a linear transformation[J]. Canad. J. Math. , 1967,19: 810-822.
  • 3[3]Kaplansky I. Infinile abelian groups, rev. ed. [M]. Ann Arbor, Mich.. University of Michigan Press, 1969.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部