期刊文献+

复振荡理论中的一个扰动问题 被引量:2

ONE PERTURBATION PROBLEM IN COMPLEX OSCILLATION THEORY
下载PDF
导出
摘要 1989年,Bank,Laine和Langley提出并证明了一个二阶微分方程的扰动结果,但方程系数仅限于正整数级的整函数.作者将这个结果扩展到其系数是无穷级整函数的情况. In 1989,Bank,Laine and Langley raised and proved a perturbation result for second order differential equations with entire coefficients only of positive integer order. Their result is extended to the case with entire coefficients of infinite order.
出处 《华南师范大学学报(自然科学版)》 CAS 2003年第3期25-28,共4页 Journal of South China Normal University(Natural Science Edition)
基金 广东省自然科学基金资助项目(020586)
关键词 复振荡理论 二阶微分方程 整函数 扰动 亚纯函数 零点收敛指数 differential equation complex oscillation entire function perturbation
  • 相关文献

参考文献3

  • 1HAYMAN W. Meromorphic Functions[M]. Oxford:Oarendon Press,1964.
  • 2BANK S, LAINE I, LANGLEY J. Oscillation results for solutions of linear differential equations in the complex domain[J]. Results in Math, 1989,16:3 - 15.
  • 3JANK G, VOLKMANN L. Meromorphe Funktionen und Differentialgleichungen[ M]. Basel- Boston: Birkhauser,1985.

同被引文献13

  • 1陈特为.复振荡扰动问题的一个进一步结果[J].江西师范大学学报(自然科学版),2005,29(1):1-3. 被引量:1
  • 2Hayman W. Meromorphic functions[M].Oxford:Clarendon Press, 1964.
  • 3Bank S, Laine I, Langley J. Oscillation results for solutions of linear differential equations in the complex domain[J]. Results in Math,1989,16:3 - 15.
  • 4Jank G,Volkmann L.Meromorphe functiona and differential gleichungen[M].Basel-Boston:Birkhauser,1985.
  • 5Hayman W K. Meromorphic functions [M]. Oxford: Clarendon Press, 1975.
  • 6Laine I. Nevanlinna theory and complex differential equations [M]. Berlin: Walter de Gruyter, 1993.
  • 7Yang Le. Value distribution theory and it's new researches [M]. Beijing: Beijing Science Press, 1982.
  • 8Chiang Yikman, Gao Shian. On a problem in complex oscillation theory of periodic second order linear differential equations andsome related perturbation results [J]. Ann Acad Sci Fenn, 2002, 27: 273-390.
  • 9Bank S, Laine I, Langley J. Oscillation results for solutions of linear differential equations in the complex domain [J]. Results in Math, 1989, 16: 3-15.
  • 10Valiron G. Lecture on the general theory of integral fimctions [M]. New York: Chelsea, 1975.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部