期刊文献+

复合金属纳米颗粒多孔硅的光学非线性特性 被引量:4

Nonlinear Optical Properties of Porous Silicon with Metallic Nanoparticles
下载PDF
导出
摘要 根据多孔硅中的量子限制效应和金属颗粒与电磁场相互作用的Mie理论及非线性光学的基本原理,提出了用于复合金属纳米颗粒多孔硅微结构的计算模型,分析了复合金属纳米颗粒多孔硅的非线性光学性质.计算了复合Ag(Au)纳米颗粒多孔硅的场增强因子,得到了在不同的金属颗粒含量时,复合体系的三阶极化率随入射光波长变化的关系,为制备具有强非线性光学效应的硅基材料及其应用提供了重要参考. The microstructure model for the computation of the porous silicon with metallic nanoparticles has been proposed and the nonlinear optical properties of this compound system has been analysed, based on the quantum confinement effect in porous silicon,the theory of interaction between metal particles and electromagnetic field and the principle of nonlinear optics. The field enhancement factor of porous silicon with Ag(Au) nanoparticles has been derived and the relation between the nonlinear susceptibility of this material and the incident wavelength in different concentration of metallic nanoparticles has been obtained.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2003年第5期605-608,共4页 Journal of Wuhan University:Natural Science Edition
基金 湖北省自然科学基金资助项目(97J002)
关键词 复合金属纳米颗粒 多孔硅 非线性光学效应 MIE理论 发光特性 微结构 porous silicon metallic nanoparticles nonlinear optics
  • 相关文献

参考文献11

  • 1Canham L T. Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers[J]. Appl Phys Lett, 1990,57(9/10) : 1046-1048.
  • 2Hommerich U, Namavar F, Cremins A,etal. A Spectroscopic Study on the Luminescence of Er in Porous Silicon [J]. Appl Phys Lett, 1996,68(14) : 1951-1953.
  • 3Sen S, Siejka J, Savtchouk A, et al. Spin-on Doping of Porous Silicon and Its Effect on Photoluminescence an Transport Charactics [J]. Appl Phys Lett, 1997,70(17) :2253-2255.
  • 4Jain R K, Lind R C. Degenerate Four-Wave-Mixing in Semiconductor Doped Glasses [J]. Opt Soc Am,1983, 73(5) :647-649.
  • 5Hang H, Schmitt R S. Basic Mechanisms of the Optical Nonlinearities of Semiconductors Near the Bandedge [J]. Opt Soc Am(B), 1985, 2(7) :1135-1138.
  • 6Wokaun A, Bergman J G, Herilage J P, etal. Surface Second Harmonic Generation from Metal Island Films and Microlithographic Structures [J]. Phys Rev B,1981,24(2) : 849-856.
  • 7Haus J W, Tamarao I, Bowden C M. Effective-Medium Theory of Nonlinear Ellipsoidal Composites [J].Phys Rev B, 1989 ,40(10): 5729-5734.
  • 8Lettieri S, Fiore O, Maddalena P,et a l. Nonlinear Optical Refraction of Free-Standing Porous Silicon Layers[J]. Opt Commun, 1999,15(9) :383-391.
  • 9Perenboom J A A J, Wyder P, Meier F. Electronic Properties of Small Metallic Particles [J]. Phys Rep,1981,78(2): 173-292.
  • 10Sipe J E, Robert W B. Nonlinear Susceptibility of Composite Optical Materials in the Maxwell Garnett Model [J]. Phys Rev A, 1992, 46(3) : 1614-1629.

同被引文献30

  • 1郑勇林,郑瑞伦.磁性颗粒膜法拉第转角的研究[J].光学学报,2005,25(8):1126-1130. 被引量:9
  • 2郑勇林.磁性颗粒膜的铁磁共振[J].四川师范大学学报(自然科学版),2006,29(4):477-480. 被引量:3
  • 3[1]Jain R K,Lind R C.Degenerate Four-Wave-Mixing in Semiconductor Doped Glasses[J].Opt Soc Am,1983,73(5):647-649.
  • 4[2]Hang H,Schmitt R S.Basic Mechanisms of the Optical Nonlinearities of Semiconductors Near the Band Edge[J].Opt Soc Am(B),1985,2(7):1135-1143.
  • 5[8]Olbright G R,Peyghambarian N,Koch S W,et al.Optical Nonlinearities of Glasses Doped with Semiconductor Microcrystallites[J].Opt Lett,1987,12:413-415.
  • 6[9]Rammanl R,Tannous C,Breton P.Tremblay.Flicker (1/f) Noise in Percolation Networks:A New Hierarchy of Exponents[J].Phys Rev Lett,1985,54:1718-1721.
  • 7[10]Wright D C,Bergman D J,Kantor Y.Resistance Fluctuations in Random Resistor Networks Above and Below the Percolation Threshold[J].Phys Rev B,1986,33:396-401.
  • 8[11]Garfunkel G,Weissman M B.Noise Scaling in Continuum Percolating Films FJ].Phys Rev Lett,1985,55:296.
  • 9[12]Rammal R,Tannous C,Tremblay A M S.1/f Noise in Random Resistor Networks:Fractals and Percolating Systems[J].Phys Rev A,1985,31:2662-2671.
  • 10[13]Cummings K D,Garland J C,Tanner D B.Optical Properties of a Small-Particle Composite[J].Phys Rev B,1984,30.4170-4182.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部