期刊文献+

基因组重排问题的一个近似算法

An Approximation Algorithm for Genome Rearrangement Problem
下载PDF
导出
摘要 分子生物学中基因无方向的反向基因组重排问题在数学上已被证明是一个NP困难问题.基于断点图的概念,给出一个时间复杂性为O(max{b3(π),nb(π)}),空间复杂性为O(n)的求其近似最优解的算法.其中n为基因组中基因个数,π=(π1,π2,…,πn)表示n个基因的一种排列,b(π)表示排列π中的断点数.数据实验的结果表明,该近似算法可以求得较好的结果. In the paper we consider the problem of genome rearrangements of the unoriented gene by reversals in molecular biology.It is a NP-hard problem.Based on the concept of a breakpoint graph, we develop an approximation algorithm for problem.The algorithm has an O(max{b^3(π),nb(π)}) time complexity and an O(n) space complexity, where n is the number of genes in genome,π=(π_1,π_2,...,π_n) is a permutation of n genes and b(π) is the number of breakpoints in permutation π.The experiments show that in most cases, our approximation algorithm can find a better solution than the one obtained by the approximation algorithm of Kececioglu and Sankoff.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2003年第5期580-584,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(30170214) 武汉大学自强基金资助
关键词 分子生物学 反向基因组重排 反向排序 断点图 近似算法 最优解 分枝定界算法 genome rearrangement sorting by reversals breakpoint graph approximation algorithm
  • 相关文献

参考文献10

  • 1HannenhaUi S, Pevzner P. Transforming Cabbage into Turnip [J3. Journal of the ACM, 1999,46(1) :1-27.
  • 2Setiabal J, Meidanis J. Introduction to Computational Molecular Biology [M]. Boston: PWS Publishing Company, 1997.
  • 3Pevzner P A. Computational Molecular Biology : An Algorithmic Approach [M]. Cambridge: MIT Press,2000.
  • 4Sankoff D, EI-Mabrouk N. Genome Rearrangement[A]. Jiang T, Xu Y, Zhang M, eds. Topics in Computational Biology [C]. Cambridge: MIT Press, 2001.
  • 5Kaplan H, Shamir R, Tarjan R E. A Faster and Simpler Algorithm for Sorting Signed Permutations by Reversals[J]. SIAM Journal of Computing, 1999,29(3) :880-892.
  • 6Bader D, Morot B, Yan M. A Linear-time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study [J]. Journal of Computational Biology ,2001,8(5) :483-491.
  • 7Caprara A. Sorting by Reversals is Difficult [A].Proceedings of the First Annual International Conference on Computational Molecular Biology [C].New York:ACM Press, 1997.
  • 8Caprara A. Sorting Permutations by Reversals and Eulerian Cycle Decompositions EJ3. SIAM J of Discrete Mathematics, 1999, 12(1) : 91-110.
  • 9Kececioglu J, Sankoff D. Exact and Approximation Algorithms for Sortingby Reversals, with Application to Genome Rearrangement[J]. Algorithmica, 1995,13:180-210.
  • 10Lancia G. Optimization Problems in Computational Molecular Biology [Ph.D. Thesis]. http://citeseer.nj. nec. com/ lancia97optimization. html. 1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部