期刊文献+

三维扩散方程非正交六面体网格的有限体积差分法 被引量:1

Nonorthogonal hexahedral mesh finite volume difference method for the 3-D diffusion equation
原文传递
导出
摘要 三维扩散方程非正交网格的差分方法是计算流体力学和数值热传导中一个基础性的课题。该文在二维扩散方程的有限体积差分方法的基础上,研究了在非正交六面体网格下三维扩散方程的有限体积差分方法,提出了一个计算精度很高、通量守恒且适应大变形网格的有限体积差分格式。取单元中心作为计算节点,减小了计算量;利用通量守恒条件确定界面中心的函数值,保证方法的守恒性;对网格点采用了Lagrange因子插值法,考虑了各插值点的相对位置,因此更适应非正交网格的计算;采用不完全三角分解预处理Bi-CGSTAB方法求解线性代数方程组。不同Z网格上的数值实验结果表明该算法是有效的。 Accurate nonorthogonal mesh difference methods for the 3D diffusion equation for scientific computations are a fundamental problem in computational fluid dynamics (CFD) and numerical heat conduction analyses. Based on the finite volume difference method for the 2D diffusion equation, a finite volume difference method was developed for the 3D diffusion equation for nonorthogonal meshes which is accurate, can conserve the fluxes and is suitable for highly distorted grids. The method uses cellcenter nodes, which reduces computations of the cell volumes and vectors and, hence, the entire computational lood. To conserve the fluxes, flux conservation was used to compute the fluxes at the center of the interfaces. The Lagrange method was used to interpolate the values of the dependent variables from the grid points. Since the interpolation accounts for the relative positions of the grid points, the method is more suitable for nonorthogonal grids. Lowerupper triangular factorization preconditioning was used with the BiCGSTAB method to solve the linear algebra equations. Experiments on 'Z' grids show that the method is accurate and very effective on various grids with different geometric measures and distortions. 
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第10期1365-1368,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(10176023) 国防科技重点实验室基金试点项目(00JS76.8.1JW0110)
关键词 三维扩散方程 非正交六面体网格 有限体积差分法 Lagrange因子插值法 三维抛物方程 finite volume difference method 3-D diffusion equation flux conservation nonorthogonal hexahedron
  • 相关文献

参考文献6

  • 1李德元 水鸿寿 汤敏君.关于非矩形网格上的二维抛物型方程的差分格式[J].数值计算与计算机应用,1980,(1980):217-224.
  • 2Lien F S. A pressure-based unstructured grid method for all-speed flows [J]. Int J Numtr Meth Fluids, 2000,33(2):355 - 374.
  • 3Palmer T S. Discretizing the diffusion equation on unstructured polygonal meshes in two dimensions [J].Annals of Nuclear Energy, 2001, 28(12): 1851 - 1880.
  • 4van der Vorst H A. Bi-CGSTAB: A fast and smoothy converging variant of Bi-CG for the solution of nonsysmmetric linear systems [J]. SIAM J Sc Sta Com, 1992,13(4): 631 - 644.
  • 5Voss D A, Khaliq A Q M. Parallel LOD methods for second order time dependent PDEs [J]. Comput Math Appl, 1995,30(1) : 25 - 35.
  • 6Kershaw D S. Differencing of the diffusion equation in Lagrangian hydrodynamics code [J]. J Comput Phys, 1981,39(2) : 375 - 383.

共引文献8

同被引文献8

  • 1殷东生,杜正平,陆金甫.非结构四面体网格上扩散方程的有限体积差分方法[J].数值计算与计算机应用,2005,26(2):92-100. 被引量:1
  • 2李德元 水鸿寿 汤敏君.关于非矩形网格上的二维抛物型方程的差分格式[J].数值计算与计算机应用,1980,(1980):217-224.
  • 3LIEN Fue-Sang. A pressure-based unstructured grid method for all-speed flows[J]. lnt J Numer Meth Fluids, 2000,(33):355 - 374.
  • 4Hermeline F. A Finite volume method for the approximation of diffusion operators on distorted meshes [J]. J Computational Physics, 2000, 160: 481-499.
  • 5Mikulaa K, Sgallarib F. Semi-implicit finite volume scheme for image processing in 3D cylindrical geometry [J].J Computational and Applied Mathematics, 2003, 161:119 - 132.
  • 6Palmer T S. Diseretizing the diffusion equation on unstructured polygonal meshes in two dimensions[J].Annals of Nuclear Energy, 2001, 28:1851 - 1880.
  • 7Handlovicova A, Mikula K, Sgallari F. Variational numerical methods for solving nonlinear diffusion equations arising in image processing[J]. J Visual Communication and Image Representation, 2002, 13 : 217 - 237.
  • 8陈光南,李德元,万正苏.解三维扩散方程的积分内插法格式[J].计算物理,2003,20(3):205-209. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部