期刊文献+

基于离散泊松方程解的相位展开方法 被引量:35

Phase Unwrapping Method Based on the Solution of Discrete Poisson Equation
原文传递
导出
摘要 提出了基于离散泊松方程解的相位展开方法 ,针对被测件表面疵病 (阴影、断裂、孔洞、噪声等 )奇异点所产生的相位跳变和截断 ,建立了相位展开算法模型 ;引入离散余弦变换求解具有诺埃曼边界条件的离散泊松方程 ,得到最小二乘意义下的展开相位解。经实验证明 ,该方法能够消除干涉图奇异点相位跳变 ,消除传统相位展开法所产生的“跳序”和“拉线”现象 。 A phase unwrapping algorithm based on the solution of discrete Poisson equation is presented to retrieve the true phase of the object from wrapped phase. Algorithm model is constructed aiming at phase discontinuous and jumping caused by oddity points in interference pattern. Discrete cosine transform (DCT) is introduced to solve discrete Poisson equation which has Neumann boundary condition. Phase unwrapping results are obtained under least-squares method meaning. In comparison with the traditional algorithm, this method can effectively remove the discontinuous influence of shadow, blind spots, holes and noises, remove order jumping and wire drawing and resume true phase at the same time. Preferable experimental results are obtained in phase-shifting interference measurement.
出处 《光学学报》 EI CAS CSCD 北大核心 2003年第10期1245-1249,共5页 Acta Optica Sinica
基金 国家自然科学基金 (5 9975 0 5 2 )资助课题
关键词 离散泊松方程解 相位展开方法 离散余弦变换 相移干涉术 三维形貌测量 physical optics phase unwrapping Poisson equation discrete cosine transform
  • 相关文献

参考文献9

  • 1葛爱明,陈磊,陈进榜,朱日宏.有遮拦干涉图像的数字化处理技术研究[J].光学学报,2000,20(6):775-780. 被引量:8
  • 2许谊,徐毓娴,惠梅,蔡昕.微分相衬干涉显微镜定量测量表面形貌[J].光学精密工程,2001,9(3):226-229. 被引量:10
  • 3Fornaro G, Franceschetti G, LanaH R et al . Robust phase-unwrapping techniques, a comparison. J Opt Soc Am (A), 1996, 13(11):2355-2366.
  • 4Song S M H, Napel S, Pele NJ etal.. Phase unwrapping of MR phase images using Poisson equation. IEEE Trans.Image Process, 1995, 4(1) :667-676.
  • 5Su X Y. Phase unwrapping techniques for 3-D shape measurement, laroc. SPIE, 1996, 2866:460-465.
  • 6Strand J, Taxt T. Performance evaluation of two-dimensional phase unwrapping algorithms. Appl Opt ,1999, 38(20) :4333-4344.
  • 7Hunt B R. Matrix formulation of the reconstruction of phase values from phase differences. J Opt Soc Am (A), 1979, 69(3):393-399.
  • 8Kerr D, Kaufmann G H, Galizzi G E. Unwrapping of interferometric phase-fringe maps by the discrete cosine transform. Appl Opt , 1996, 3S(5):810-816.
  • 9Ghiglia D C, Romero L A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J Opt Soc Am (A), 1994, 11(1):107-117.

二级参考文献3

共引文献16

同被引文献303

引证文献35

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部