期刊文献+

一类滞后型非自治的捕食者-食饵系统的周期解 被引量:6

PERIODIC SOLUTION FOR A DELAYED NONAUTONOMOUS PREDATOR-PREY SYSTEM
原文传递
导出
摘要 本文研究了一类滞后型三种群捕食者-食饵Lotka-Volterra系统.利用重合度理论 建立了这类系统正周期解的存在性判据. In this paper, a delayed nonautonomous three species predator-prey Lotka-Volterra system is studied. By using the coincidence degree theory, we establish the existence-critertion for a positive periodic solution to the system.
出处 《系统科学与数学》 CSCD 北大核心 2003年第4期461-466,共6页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(19871005) 教委博士点专项基金(1999000722)资助课题
关键词 捕食者-食饵系统 周期解 重合度理论 存在性 数学生态学 Predator-prey system, positive periodic solution, coincidence degree theory.
  • 相关文献

参考文献8

  • 1Goh B S. Global stability in two species interactions. J Math Biol, 1976, 3: 313-318.
  • 2Hastings A. Global stability in two species systems. J Math Biol, 1978. 5:- 399-403.
  • 3He X Z. Stability and delays in a predator-prey system. J Math Anal Appl, 1996, 198: 355-370.
  • 4Song X and chen L. Harmless clelays and global attractivity for nonautonomous predator-prey system with dispersion. Computers Math Applic, 2000, 39: 33-42.
  • 5Xu Rui and Chen Lansun. Persistence and Stability of two -species ratio-dependent predaator-prey system with delay in a two-patch environment. Computers Math Applic, 2000, 40: 577-588.
  • 6Zhu Hongliang and Kuiehen D. Global Stability and periodic orbits for a two-patch diffusion predator-prey model with time delays. Nonlinear Anal, 2000, 41: 1083-1096.
  • 7Xu Rui and Chen Lansun. Persistence and Stabihty for a Delayed Nonautonomous Predator-Prey System without Dominating Instantaneous Negative Feedback. J Math Anal Appl, 2001, 262:50-61.
  • 8Gaines R E and Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Springer-Verlag, Berlin, 1977.

同被引文献21

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部