期刊文献+

基于RBF神经网络的湿蒸汽干度软测量模型 被引量:8

RBF Neural Network Based Soft Measurement Model for Dryness of Wet Steam
下载PDF
导出
摘要 针对汽驱采油中湿蒸汽干度测量精度过低的问题 ,采用RBF神经网络来建立湿蒸汽干度软测量模型 ,采用最小正交二乘法确定网络隐层节点数以及训练网络输出数值 ,并在实际运行中采用在线校正环节。所建立模型具有良好的逼近精度 。 In order to resolve the low accuracy problem of dryness measurement for wet steam in gas driving oil extraction,the soft measurement model is established based on RBF neural network.By using least orthogonal square method the node number of implicit layer of network and output value of training network are determined.In practical operation,online correction element is adopted.The model offers excellent accuracy of proximity.The effectiveness of this method is approved in Liaohe Oil field.
出处 《自动化仪表》 CAS 北大核心 2003年第9期9-12,共4页 Process Automation Instrumentation
关键词 汽驱采油 湿蒸汽 干度 测量精度 软测量 最小正交二乘法 RBF神经网络 Soft measurement Dryness of wet steam RBF network Least orthogonal square method
  • 相关文献

参考文献4

  • 1于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 2周小林,曲良孟,董文葆.湿蒸汽干度的软测量技术[J].化工自动化及仪表,1994,21(4):42-45. 被引量:10
  • 3Chen S. Orthogonal least square method and their application to non _ linear system identification. Int J Control, 1989,50( 5 ) : 1873 - 1896.
  • 4Chen S. Orthogonal least square learning algorithm for radial basis function networks. IEEE Trans. on NN, 1992,2(2) :302 - 309.

二级参考文献22

共引文献153

同被引文献43

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部