期刊文献+

基于混沌变量的前向神经网络结构优化设计 被引量:12

Optimization design of feed-forward neural network structure based on chaos variables
下载PDF
导出
摘要 提出一种关于多层前向神经网络结构的混沌优化设计方法。将混沌变量引入神经网络结构的优化搜索中,使得神经网络的隐层节点数以及所有权参数都处于混沌状态中,整个网络结构呈现为动态变化。从动态的神经网络结构中,根据性能指标来寻找一个全局最优或近似于全局最优的网络结构。仿真实验表明,采用该方案得到的神经网络结构模型对异或问题、非线性函数具有较高的逼近精度和较好的泛化能力。 The optimization design method is proposed for feed-forward neural network structure by means of chaos ergodicity and randomicity. Chaos variables are applied in searching for neural network structure, in which node numbers of hidden layer and all weight parameters of neural network are in chaotic state. All neural network structure is protean. A globally optimal or approximate globally optimal neural network structure is found according to performance standard from dynamic neural networks. Simulation results show feed-forward neural network has high approximation precision and good generalization capability to XOR problem and nonlinear function.
出处 《控制与决策》 EI CSCD 北大核心 2003年第6期703-707,共5页 Control and Decision
基金 湖南省自然科学基金资助项目(01JJY3029)。
关键词 神经网络 结构优化 泛化能力 混沌 Chaos theory Computer simulation Global optimization Structural analysis
  • 相关文献

参考文献12

  • 1王晓华,敬忠良,姚晓东,邹俊忠.由倍周期分叉走向混沌的Logistic Map及其控制器设计[J].信息与控制,2001,30(4):318-321. 被引量:8
  • 2魏海坤,宋文忠,徐嗣鑫.基于结构分解的神经网络设计算法[J].自动化学报,2001,27(2):276-279. 被引量:8
  • 3Barron A R. Approximation and estimation bounds for artificial neural networks [J]. Machine Learning, 1994,14:115-133.
  • 4Russell Reed. Pruning algorithms-A survey[l]. IEEE Trans on Neural Networks, 1993,4 (5) : 239-242.
  • 5Setiono R. A penalty function approach for pruning feed-forward neuralnetworks[J]. Neural Computation,1997,9 : 185-204.
  • 6Chung F L, Lee L. Network-growth approach to design of feed-forward neural networks [J]. IEE Proc Control Theory Appl, 1995,142 (5) : 486-492.
  • 7Doering Axel, Galicki Miroslaw, Witte H. Structure optimization of neural networks with a algorithm [J].IEEE Trans on Neural Networks, 1997, 8 (6): 1434-1445.
  • 8Kitano H. Designing neural network using genetic algorithm with generation system [J]. Complex Systems,1990,4(3) :461-476.
  • 9Maniezzov. Genetic evolution of the topology and weight distribution of neural networks [J]. IEEE Trans on Neural Networks,1994, 5(1) :39-53.
  • 10Yao Xin. Evolving artificial networks[J]. Proc IEE,1999,87 (5) : 1423-1447.

二级参考文献12

共引文献14

同被引文献93

引证文献12

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部