期刊文献+

计算平面Ⅰ、Ⅱ型复合应力强度因子的半权函数法 被引量:3

SEMI-WEIGHT FUNCTION METHOD ON COMPUTATION OF MIXED-MODE STRESS INTENSITY FACTORS
下载PDF
导出
摘要 给出计算一般平面裂纹问题应力强度因子的半权函数方法。该方法引入两个满足裂纹面零应力条件、平衡方程以及裂尖位移具有r- 1 2 奇异性的虚拟位移与应力函数的解析表达式 ,即半权函数。从功能互等定理出发 ,结合从裂纹下缘到上缘绕裂尖任意路径的位移与应力的近似值 ,得到Ⅰ、Ⅱ复合型应力强度因子KⅠ 和KⅡ 积分形式的表达式。由于在积分中避开了裂尖的奇异性 ,因此即使采用较粗糙的模型或方法得到的近似值 ,也可以得到精度较高的KⅠ 、KⅡ 。相对于权函数法 ,本方法的限制条件较少 ,半权函数易于获得 ,实用性强 ;相对于有限元法计算量小 ,模型建立简便。 Semi-weight function method was used and developed to solve general plane fracture problems. Two sets of analytical expression of semi-weight functions were obtained. Integral expression of composite stress intensity factors, were obtained from reciprocal work theorem with semi-weight functions and approximate displacement and stress values on any integral path around crack tip. These semi-weight functions satisfy conditions of equilibrium equation, stress and strain relationship, special singularity of displacement near the crack tip and the traction free on the crack surface. The singularity of stress near crack tip is avoided. The approximate values can be calculated from numeric methods. FEA was used to calculate approximate values in this paper. There were no singular elements be used in modeling. With rough mesh size, the semi-weight function method can get more precision result than that from pure FEA with fine mesh size and singular elements on crack tip. The calculation results of applications show that among high precision calculation methods, compared with the weight function method, this method provides applicable analytical expressions of semi-weight functions and in less restrict conditions. Compared with finite element method, it needs fewer amounts of calculation and simple and convenient FEA model.
出处 《机械强度》 CAS CSCD 北大核心 2003年第5期576-579,共4页 Journal of Mechanical Strength
基金 国家自然科学基金资助项目 (1 9872 0 66)~~
关键词 平面裂纹问题 半权函数法 功能互等定理 应力强度因子 路径独立积分 Plane fracture problems Semi-weight function method Reciprocal work theorem Stress intensity factors Path-independent integrals
  • 相关文献

参考文献4

  • 1Chin中国航空研究院.应力强度因子手册[M].北京:科学出版社,1993.320-321.
  • 2Bueckner H F. A novel principle for the computation of stress intensity factor. ZAMM, 1970, 50:529 - 546.
  • 3Liu C T, Zhang D Z. Semi-weight function method in fracture mechanics. International Journal of Fracture, 1991,48:R3 - R8
  • 4Brown W F, Srawley J E. Plane strain crock toughness testing of high strength metallic materials. ASTM STP410,1969.77.

同被引文献39

  • 1马开平,柳春图.双材料界面裂纹平面问题的半权函数法[J].应用数学和力学,2004,25(11):1135-1142. 被引量:11
  • 2欧贵宝,陈建兵,赵东杨.分域边界元法双映射奇异元计算应力强度因子[J].哈尔滨工程大学学报,2005,26(6):736-738. 被引量:2
  • 3董世明,周君,汪洋,夏源明.复合型加载条件下PMMA断裂行为的实验研究[J].机械强度,2006,28(4):556-561. 被引量:4
  • 4Liu Chuntu,Zhang Duanzhong.Semi-weight function method in fracture mechanics.International Journal of Fracture,1991,48:R3-R8.
  • 5柳春图,周明星.计算Reissner板应力强度因子的半权函数法..工程与力学.北京:清华大学出版社,1999.164-169.
  • 6Lekhnitskii S G.Theory of elasticity of an anisotropic body.Moscow:Mir Publisher,1981.
  • 7Eshelby J D.Anisotropic elasticity with applications to dislocation theory.Acta Metall,1953,1:251-259.
  • 8Stroh A N.Dislocations and cracks in anisotropic elasticity.Philosophical Magzine,1958,3:625-646.
  • 9Stroh A N.Steady state problems in anisotrpic elsticty.Journal of Mathematics and Physics,1962,41:77-103.
  • 10Barnett D M,Lothe J.Synthesis of the sextic and the integral formalism for dislocations,Greens function and surface waves in anisotropic elastic solids.Phys Norv,1973,7:13-19.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部