摘要
:该文针对边界元法存在近边界点力学量计算的困难 ,给出了一个通用性方法 ,将近边界点到边界单元的距离参数通过分部积分变换到积分式之外 ,从而计算出二维问题近边界点参量的几乎强奇异和超奇异积分。该法同样适用于板壳问题的边界元法 ,尤其是对于将超奇异边界积分方程正则化为强奇异边界积分方程的边界元法 ,求解近边界点参量更加有效。
This paper gives a general algorithm to deal with the difficult problem of calculating the quantities at interior points very close to the boundary by the boundary element method(BEM). In the algorithm, which is applied to solving two dimensional problems, the least distance from the source point to near boundary element is transformed out of the integral representations of the element with an integration by parts, so that the nearly strongly singular and nearly hypersingular integrals are successfully computed.The algorithin can also be used to analyze the plates and shells problems with the BEM.Especially,it is more efficient for solving the nearly singular integrals when the supersingular boundary integral equation(BIE) are regularized to the strongly singular BIE.
出处
《合肥工业大学学报(自然科学版)》
CAS
CSCD
2000年第1期86-90,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金!资助项目 (19572 0 6 0 )
原机械工业部科学基金资助!项目 (982 50 918)
关键词
边界积分方程
几乎奇异积分
边界元法
超奇异积分
弹性力学
boundary element methods
nearly singular integrals
interior points close to the boundary
mechanics of elasticity