期刊文献+

n维空间中一类耦合系统解的爆破性质

The Blow-up of Solutions to a Class of the Coupled System in n-dimension
下载PDF
导出
摘要 采用Tsutsumi和Zhang ( Adv. Math. Sci. Appl., 1998, 10: 232-246 ) 和Weinstein等(Comm. Math. phys., 1983, 87: 567-576.)的方法,研究了一类非线性 Schrdinger 方程耦合系统()yqyyyy=+D+2Fit,,22yqq=+D-a(()()txtx,,qy和分别为复值和实值函数,0,,>tRxRan)的初值问题,得到在n维空间中当()()xx00,yy=时解的爆破性质。 By using methods initiated by Tsutsumi, Zhang (Adv. Math. Sci. Appl. 1998, 10: 232~246.) and Weinstein etc. (Comm. Math. Phys., 1983, 87: 567-576. ), the following intial-value problem for the coupled system of the nonlinear Schr鰀inger equations is studied: ()yqyyyy=+D+2Fit , ,22yqq=+D-a where ()tx,y and ()tx,q are complex and real-value functions respectively and 0,,ftRxRan .The blow-up of the solution of the system in n-dimension is obtained.
作者 陈文英
出处 《重庆三峡学院学报》 2003年第6期105-109,共5页 Journal of Chongqing Three Gorges University
关键词 非线性SCHRODINGER方程 耦合系统 爆破 Nonlinear Schr鰀inger equation coupled system blow-up.
  • 相关文献

参考文献3

  • 1[1]Tsutsumi Y, Zhang J. Instability of optical solitons for tow-wave interaction model in cubic nonlinear media [J]. Adv. Math. Sci. Appl., 1998, 8(2):691-713.
  • 2[2]Weinstein M I. Nonlinear Schrodinger equations and sharp interpolation estimates [J]. Comm. Math. Phys., 1983, 87: 567-576.
  • 3[3]Abdullaev F Kh. Dynamical chaos of solitons and nonlinear periodic waves[J]. Phys. Reports., 1989, 179 (1): 1-78.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部