期刊文献+

一种改进的RPCL聚类算法及其在软测量中的应用 被引量:2

An Improved RPCL Clustering Algorithm and its Application in Soft Sensing
下载PDF
导出
摘要 传统RPCL聚类算法是在随机选取样本的前提下修正权矢量的,没有考虑样本集的空间分布情况。为此,该文提出了一种改进的RPCL聚类算法。该算法引入样本区域密度的概念,根据密度大小按不同的概率选取样本,以修正权矢量。利用文犤1犦中的算例证明了新算法比传统RPCL算法具有更好的聚类速度和精度。最后将算法用于基于RBF神经网络的氧化铝高压溶出过程中溶出率的软测量,仿真结果表明改进的RPCL算法能很好地实现数据样本的聚类,从而提高软测量模型的泛化能力。 In traditional RPCL clustering algorithm,weight vectors are updated under the condition of selecting samples randomly and the space distribution of samples is not considered.In this paper,an improved RPCL algorithm is proposed.In this algorithm,sample region density is introduced.Weight vectors are updated under the condition of selecting samples with different probability according to their density.Example in is used to show that this new algo-rithm has better clustering speed and precision than traditional RPCL algorithm.In the end,this algorithm is used in soft sensing system of Leaching Rate(LR)in the High-Pressure Digestion(HPD)of alumina process based on RBF neural network.Simulation result shows that the improved algorithm can cluster the samples well and improve the generality of the soft sensing model.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第31期30-32,200,共4页 Computer Engineering and Applications
基金 国家863高技术研究发展项目资助(编号:2001AA411040)
关键词 RPCL算法 样本区域密度 RBF神经网络 溶出率 软测量 RPCL Algorithm,Sample Region Density,RBF Neural Network,Leaching Rate(LR),Soft Sensing
  • 相关文献

参考文献3

二级参考文献9

  • 1Wong Yuifai,Neural Computation,1993年,5卷,1期,89页
  • 2Zheng G L,Neural Networks,1996年,9卷,9期,1619页
  • 3徐秉铮,神经网络理论与应用,1994年,320页
  • 4Billings S A,Int J Control,1992年,55卷,1期,193页
  • 5Chen S,IEEE Trans Neural Networks,1991年,2卷,2期,302页
  • 6Billing S A,Int J Control,1989年,49卷,6期,2157页
  • 7Charles A. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions[J] 1986,Constructive Approximation(1):11~22
  • 8谢森,王玉.非线性系统完全线性化方法的研究[J].控制理论与应用,1997,14(1):139-143. 被引量:11
  • 9杨广文,李晓明,王义和,郑纬民,王鼎兴.确定性退火技术[J].计算机学报,1998,21(8):765-768. 被引量:19

共引文献30

同被引文献20

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 2常玉清,王福利,王小刚,吕哲.基于支持向量机的软测量方法及其在生化过程中的应用[J].仪器仪表学报,2006,27(3):241-244. 被引量:28
  • 3YANG CH H, DECONINCK G, GUI W H. An optimal power-dispatching control system for the electrochemical process of zinc based on back propagation and Hopfield neural networks[ J ]. IEEE Trans. on Industrial Electronics, 2003,50(5) :953-961.
  • 4VAPNIK V N. The nature of statistical learning theory [ M]. New York: Springer Verlag, 1995.
  • 5VAPNIK V N. An overview of statistical learning theory [ J ]. IEEE Trans Neural Networks, 1999,10 (5) :988-999.
  • 6SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers [ J ]. Neural Processing Letters, 1999,9(3) :293-300.
  • 7SHIEH M-D, YANG C-C. Classification model for product form design using fuzzy support vector machines [ J ]. Computers & Industrial Engineering, 2008,55 ( 1 ) : 150-164.
  • 8JIN B, TANG Y C, ZHANG Y Q. Support vector machines with genetic fuzzy feature transformation for biomedical data classification [ J ]. Information Sciences, 2007,177 ( 2 ) : 476-489.
  • 9YANG CH H, ZHU H Q, GUI W H. Improved-PSO-based optimal scheduling for rectifier power system[ C ]. The 17th IFAC World Congress, Seoul, Korea, 2008:6078-6083.
  • 10Tham M T,Morris A J,Montague G A.Soft-sensors for process estimation and inferential control[J].J Process Control,1991,1(1):3-14.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部