摘要
In this paper we obtain some lower bounds for minus and signed domination numbers. We also prove and generalize a conjecture on the minus domination number for bipartite graph of order n, which was proposed by Jean Dunbar et al [1].
给定一个图G=(V,E),一个函数f:V→{-1,0,1}被称为G的减控制函数,如果对任意v∈V(G)均有∑_(μ∈N[v])f(μ)≥1。G的减控制数定义为γ^-(G)=min{∑_(v∈V)f(v)|f是G的减控制函数}。图G的符号控制函数的正如减控制函数,差别是广{-1,0,1}换成{-1,1}。符号控制数γ_s(G)是类似的。本文获得γ^-G)和γ_s(G)的一些下界。同时也证明并推广了 Jean Dunbar等提出的一个猜想,即对任意 n阶 2部图 G,均有γ^-(G)≥ 4(n+1^(1/2)-1)-n成立。
基金
Supported by the National Science Foundation of Jiangxi province(9911020).