期刊文献+

正则不可数基数反映GO-空间的性质

Some Properties on the Relation of GO-space and Cardinal
下载PDF
导出
摘要 本文对“每一个GO-空间都是可数仿紧的”这一性质进行了推广,得到了“每一个GO-空间都是<inf{cfx≥ω_1:x∈[LX-X]}-仿紧的”;论证了在一定条件下,一个拓扑空间和一个GO-空间乘积的正规性与这个拓扑空间和一个正则不可数基数的乘积正规性是等价的;并在这两个结论的基础上,又得出了一些重要的定理。 In this paper, we generalize the result that every GO-space is countably-paracompact and prove that every GO-space is < inf {cfx ≥ <ω1:x ?[LX- X]} -paracom-pact. We obtain that under the normality of product of a topological space and a GO-space and the normality of product of the topological space and a regular uncountable cardinal are equivalent. Based on this two thereoms, we deduce some important theorems.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2003年第4期685-690,共6页 数学研究与评论(英文版)
关键词 GO-空间 LOTS 正则不可数基数 正规性 GO-space LOTS regular uncountable cardinal normality.
  • 相关文献

参考文献9

  • 1MIWA T, KEMOTO N. Linearly ordered extensions of GO-spaces [J]. Topology and It's Applications, 1993, 54: 133--140.
  • 2KEMOTO N. Normality of products of GO-spaces and cardinal [J]. Topology Proceedings, 1993, 15:133-- 142.
  • 3KEMOTO N. The shrinking property and the L-property in ordered spaces [J]. Fundamenta Mathematice, 1990, 134:255--261.
  • 4ENGELKING R. General Topology [M]. Poblish Scientific Publishers Warszaw, 1977.
  • 5KURATOWSKI K, MOSTOWSKI A. Set Theory [M]. PWN-Polish Scientific Publishers, 1996.
  • 6PRZYMUSINSKI T C. Products of normal spaces, in:Handbook of Set Theoretic Topology [M ].KUNEN K, VAUGHAN J E. Northholland, 1984, 781--826.
  • 7LUTZER D J. On generalized ordered spaces [J]. Dissertations Math. Rozprawy Mat , 1971, 89: 32.
  • 8VAN DOUWEN E K, LUTZER D J. On the Classification of Stationary Sets [J]. Michigan Math J,1979, 26: 47--64.
  • 9ERDOS P, HAJNAL A, MATH A. et al. Combinatiorial Set Theory: Partition Relations for Cardinals[M]. Akademiaikiado Budapest, 1984.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部