摘要
本文对“每一个GO-空间都是可数仿紧的”这一性质进行了推广,得到了“每一个GO-空间都是<inf{cfx≥ω_1:x∈[LX-X]}-仿紧的”;论证了在一定条件下,一个拓扑空间和一个GO-空间乘积的正规性与这个拓扑空间和一个正则不可数基数的乘积正规性是等价的;并在这两个结论的基础上,又得出了一些重要的定理。
In this paper, we generalize the result that every GO-space is countably-paracompact and prove that every GO-space is < inf {cfx ≥ <ω1:x ?[LX- X]} -paracom-pact. We obtain that under the normality of product of a topological space and a GO-space and the normality of product of the topological space and a regular uncountable cardinal are equivalent. Based on this two thereoms, we deduce some important theorems.