期刊文献+

一种基于扩展交替投影神经网络的弱信号分离方法研究 被引量:1

A Weak-Signal Separation Algorithm Based on Extended Alternating Projection Neural Networks
下载PDF
导出
摘要 1引言 交替投影神经网络(Alternating Projection NeuralNetworks,APNN)[1]是由美国Washington大学Marks Ⅱ等人提出的.该神经网络自从提出到现在,没有引起同行的太多注意,关于其应用方面的研究更是寥寥无几. Aiming at a kind of specific situation encountered in practice, the paper proposes a weak-signal separation algorithm based on Extended Alternating Projection Neural Networks (EAPNN) by combining the time-domain features of the signal with the frequency-domain features of the signal and taking advantage of conclusions on EAPNN. Simulation results demonstrate that the algorithm is effective and that the EAPNN-based signal separation algorithm is better than the RLS-based signal separation algorithm. Although the EAPNN-based algorithm is designed for the specific situation, it is also applicable to the other situations and a basic frame of the EAPNN-based signal separation is presented. Owing to adopting neural network structure, the EAPNN-based algorithm is prone to parallel computation and VLSI design, consequently can satisfy real-time processing needs.
出处 《计算机科学》 CSCD 北大核心 2003年第10期64-66,共3页 Computer Science
基金 国家自然科学基金(No.60273033) 江苏省自然科学基金(No.DK2002081)
关键词 弱信号分离方法 信号序列 交替投影神经网络 信号处理 Alternating projection, Neural networks, Signal processing, Signal separation , Signal detection
  • 相关文献

参考文献5

二级参考文献5

共引文献6

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部