期刊文献+

配对设计生存资料的统计分析及其在临床试验中的应用

Statistical Analysis of Paired Survival Data and its Application to Clinical Trial
下载PDF
导出
摘要 目的 介绍配对设计生存资料的统计分析方法及其在临床试验中的应用。方法 运用基于协方差矩阵稳健估计的Cox回归模型 ,通过调用STATA统计软件包中stcox命令中的cluster选项 ,对配对设计生存资料进行统计分析。并用治疗烧伤临床试验中的实例比较了运用和不运用配对设计生存资料的统计分析方法的两种结果。结果 实例分析表明运用配对设计生存资料的统计分析方法时 ,可得出治疗组的创面愈合时间小于安慰剂组的结论 ,而不运用配对设计生存资料的统计分析方法时 ,其结论为治疗组和安慰剂组创面愈合时间的差异无统计学意义。结论 在对配对设计的生存资料进行统计分析时 ,应选用配对设计生存资料的统计分析方法 ,否则将降低检验的效率 。 Objective Statistical methods for paired survival analysis were introduced and applied to clinical trial in the paper.Methods Cox regression model based on robust variance-covariance matrix estimation was used in analyzing paired survival data through cluster option of stcox command in STATA software. Difference between results of paired survival analysis and ordinary survival analysis were explained through an example of clinical trial of curing burns.Results Statistical significance were observed in difference between times of cicatrizing of treat group and that of placebo group while paired survival analysis was used. Yet using ordinary survival analysis, no statistical significance were observed between the two groups.Conclusion In order to get correct answers, paired survival analysis should be used for paired design survival data. Or hypothesis test efficiency would be much lower and wrong conclusion would be resulted.
出处 《中国卫生统计》 CSCD 北大核心 2003年第5期263-265,共3页 Chinese Journal of Health Statistics
关键词 配对设计生存资料 统计分析 临床试验 应用 COX回归模型 Paired survival analysis Clinical trial Cox regression
  • 相关文献

参考文献10

  • 1Holt JD, Prentice R L. Survival analysis in twin studies and matched pair experiments. Biometrika, 1974, 61 : 17-30.
  • 2Lin DY, Wei LJ. The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association, 1989, 84: 1074-1078.
  • 3Lee EW, Wei L J, Amato DA. COX-type regression analysis for large number of small groups of correlated failure time observations. In Klein J P, Goel, P K Survival Analysis: State of the Art, Kulwer Academic Publishers, Dordrecht, 1992, 237-247.
  • 4Andersen PK, Gill RD. Cox's regression model for counting processes: a large sample study. Annals of Statistic, 1982, 10, 1100-1120.
  • 5Wei L J, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of American Statistical Association, 1989, 84, 1065-1073.
  • 6Prentice RL, Williams BJ, Peterson, AV. On the regression analysis of multivariate failuretime data. in Klein JP, Goel PK. survival analysis:state of the art, Kulwer Academic Publishers, Dordrecht, 1992, 393-406.
  • 7Lin JS, Wei LJ. Linear regression analysis for multivariate failure time observations, Journal of the American Statistical Association, 1992, 87,1091-1097.
  • 8Clayton DG, Cuzick J. Multivariate generalization of the proportional hazards model (with discussion) .Journal of the Royal Statistical Society, Series B, 1985, 148,82-117.
  • 9www. stata.com/support/faqs/stat/stmfail, html.
  • 10Wei L J, Glidden DV. An overview of statistical methods for multiple failure time data in clinical trials. Statistics in Medicine, 1997, 16: 833-839.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部