摘要
本文讨论了连续广义系统在系统矩阵为区间矩阵时的稳定性问题。通过使用Gershgorin圆盘定理 ,在假设广义区间动力系统满足系统矩阵 A主对角线元素均为负区间数的约束条件情况下 ,给出了一个使广义区间动力系统正则、无脉冲膜、稳定的充分条件。并针对系统对应的 Gershgorin圆盘半径较大的情况做了进一步的讨论 ,使上述充分条件能够适用于更一般的情况。文中举出实例说明此方法的正确性。同时 ,本文还给出了一个判别区间矩阵为非奇异的充分必要条件。
This paper considers the stability for linear continuous-time descriptor systems with system matrices being interval matrices. By using Gershgorin's theorem,a sufficient condition is given for the considered descriptor interval system, whose system matrix A has all main-diagonal values being negative interval value,to be regular,impulse-free and stable. Further more,the sufficient condition is extended to fit the condition in which the radius of the Gershgorin disc is too long. Examples are used to illustrate the validate of the method.And a necessary and sufficient condition is given for interval matrix to be nonsingular.
出处
《微处理机》
2003年第5期54-57,共4页
Microprocessors