期刊文献+

广义区间动力系统稳定的充分条件

Sufficient Conditions on the Stability of Descriptor Interval Systems
下载PDF
导出
摘要 本文讨论了连续广义系统在系统矩阵为区间矩阵时的稳定性问题。通过使用Gershgorin圆盘定理 ,在假设广义区间动力系统满足系统矩阵 A主对角线元素均为负区间数的约束条件情况下 ,给出了一个使广义区间动力系统正则、无脉冲膜、稳定的充分条件。并针对系统对应的 Gershgorin圆盘半径较大的情况做了进一步的讨论 ,使上述充分条件能够适用于更一般的情况。文中举出实例说明此方法的正确性。同时 ,本文还给出了一个判别区间矩阵为非奇异的充分必要条件。 This paper considers the stability for linear continuous-time descriptor systems with system matrices being interval matrices. By using Gershgorin's theorem,a sufficient condition is given for the considered descriptor interval system, whose system matrix A has all main-diagonal values being negative interval value,to be regular,impulse-free and stable. Further more,the sufficient condition is extended to fit the condition in which the radius of the Gershgorin disc is too long. Examples are used to illustrate the validate of the method.And a necessary and sufficient condition is given for interval matrix to be nonsingular.
作者 冯毅 张振威
出处 《微处理机》 2003年第5期54-57,共4页 Microprocessors
关键词 广义区间动力系统 稳定性 充分条件 连续系统 Descriptor systems Interval matrices Stability Gershgorin's theorem
  • 相关文献

参考文献9

  • 1Michael P Polis. An Overview of Recent Results on the Parametric Approach to Robust Stability [J].Proc. of the 28th CDC,Tampa,Florida, 1989 - 12s 23-29.
  • 2Fangxiang Wu,Zhongk Shi and Zongxi Zhou. Robust Stabilization of Linear Time- Varying Interval Systems [J].Proc. of the 3th World Congress on Intelligent Control and Automation. June 28 20001(28)6 : 3415 -3418.
  • 3Jiri Rohn. Stability of Interval Matrices, The Real Eigenvalue Case [J]. 1EEE Trans. on Automatic Control, 1992 ; (37)10:1604- 1605.
  • 4Jie Chen. Sufficient Conditions on Stability of Interval Matrices: Connections and New Results [J]. IEEE Trans. on Automatic Control, 1992; (37)4 : 541 - 544.
  • 5M E Sezer and D. D. Siljab. On Stability ot Interval Matrices [J]. IEEE; Trans. on Automatic Control,1994 ; (39)2:368- 371.
  • 6Kaining Wang, Anthony N. Michel and Derong Liu.Necessary and Sufficient Conditions for the Hurwitz and Schur Stability of Interval Matrices [J]. IEEE Trans. on Automatic Control, 1994; (39) 6:1251 -1255.
  • 7Chong Lin, James Lain, Jianllng Wang and Guang-Hong Yang. Analysis on robust stability for interval descriptor systems [J]. Systems & Control Letters,20011 (42) : 267- 278.
  • 8Svetoslav Markov. An iterative method for algebraic solution to interval equations [J]. Applied numerical mathematics, 1999;(30):225- 239.
  • 9R E Moore. Methods and Applications of Interval Analysis[J]. Siam ,Philadelphia, 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部