期刊文献+

遗忘神经网络模型及其BP算法 被引量:4

Forgetting Artificial Neural Network and Its BP Algorithm
下载PDF
导出
摘要 为解决跨时间数据训练神经网络时的数据选择问题,提出在神经网络的训练模型中引入遗忘系数,从而建立了一种改进的前馈神经网络模型——遗忘神经网络模型。介绍了该模型的基本原理,并给出了其BP算法。 This paper presents forgetting coefficient into artificial neural network to solve a problem of data selection with long time spans and proposes a new artificial neural network model, forgetting artificial neural network.It introduces the basic principle and the BP algorithm of forgetting artificial neural network.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第20期135-136,184,共3页 Computer Engineering
基金 国家"863"计划资助项目(2001AA136010) 家自然科学基金资助项目(70171013)
关键词 数据仓库 前馈神经网络 遗忘系数 遗忘神经网络 BP算法 模型 Data warehouse Feedforward neural network Forgetting coefficient Forgetting artificial neural network BP algorithm
  • 相关文献

参考文献3

  • 1Smith K A,Gupta J N D.Neural Networks in Business: Techniques and Applications for the Operations Researcher.Computers & Operations Research, 2000,27.
  • 2Werbos P J.The Roots of Backpropagation; From Ordered Derivatives to NN. John Wiley & Sons Inc, 1994.
  • 3Shtub A,Versano R.Estimating the Cost of Steel Pipe Bending, a Comparison Between Neural Networks and Regression Analysis. Int J Production Economics, 1999,62 (3): 201-207.

同被引文献22

  • 1于鹏,顾冲时.大坝安全监测的组合预测模型[J].人民黄河,2006,28(1):67-68. 被引量:26
  • 2翁静君,华锡生.改进的BP神经网络在大坝安全监控中的应用[J].水电自动化与大坝监测,2006,30(4):62-65. 被引量:14
  • 3[1]中国银行业监督管理委员会.The New Basel Capital Accord(中译稿)[C].2003.
  • 4[2]Dimitras A I,Zanakis S H, Zopounidis C. A Survey of Business Failures With and Emphasis on Prediction Method Sand Industrial Applications[J]. European Journal of Operational Research,1996,90:487~513
  • 5[3]Eisenbeis R A. Pit Alls in the Application of Discriminat Analysis in Business, Finance, and Economic[J]. Journal of Finance,1977,32(3):875~900
  • 6[4]Graf J, Nakhaeizadeh G. Recent Development in Solving the Credit-scoring Problem[A]. Planntamura V L, Soucek B, Vissagio G. (eds). Logistic and learning for Quality Software, Management and Manufacturing[C]. New York:John Wiley,1993.
  • 7[5]Altman E I. Corporate Distress Diagnosis: Comparis on Susing Linear Discriminant Analysis and Neural Networks(The Italian Experience)[J]. Journal of Banking and Finance, 1994, 18: 505~529
  • 8[6]Breiman L. Classification and Regression Tress[A].T H Wadsworth Statistics/probability Series, Wadsworth & Brooks/Cole Advanced Books & Software[C]. Pacific Grove, CA, 1984.
  • 9[7]Frydman H. Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress[J]. Journal of Finance, 1985,40(1):269~291
  • 10[8]Tam K Y, Kiang M Y. Managerial Applications of Neural Networks: The Case of Bank Failure Predictions[J]. Management Science, 1992, 38(7):926~947

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部