期刊文献+

“论两种不同正交异性楔弹性接触”中应力奇异性

THE STRESS SINGULARITIES IN THE ELASTIC CONTACT PROBLEM OF TWO DISSIMILAR ORTHOTROPIC WEDGES
下载PDF
导出
摘要 一般楔形体受面力作用时,其应力及位移有时会变为无限大。本文继续[1]的工作,分析均匀正交异性楔和两种不同正交异性复合楔的应力奇异性问题。由于假定了G_(rθ)=((E_rE_θ)/(1/2))/(2(1+(μ_(rθ)μ_(θr))/(1/2)),可用解析法得到应力奇异阶次为γ^(-s)型。对于均匀正交异性楔s只与材料弹性模量比值平方根kl=(E_θ/E_r)/(1/2)有关;对于正交异性复合楔,当k'=k'',s与复合楔中材料剪切模量比值e(=G_(rθ)~'/G_(rθ)~'')是无关的。 For general wedges being subjected to traetions, the stresses and displace ments of which sometimes may become infinite. This paper gives a research after the paper [1] to analyse the singularties of the contact stress field of two homogeneous and orthotropic wedges as well as two dissimilar orthotropic composite wedges. On the supposition G_(rθ)=(E_rE_θ)^(1/2)/2(1+(μ_(rθ)μ_(θr)^(1/2)) singularities of the type r^(-s) may be obtained by use of the analytic method For homogeneous and orthotropic wedges, s is related to the square root of the ratio of moduli of elasticity of the material in the principal directions (E_θ/E_r)^(1/2)=K. For composite wedges of orthotropic materials,when K'= K', s is not related to the ratio of moduli of elasticity of shear in the principal directions G'_(rθ)/G'_(rθ)=e.
机构地区 河海大学
出处 《上海力学》 CSCD 1992年第1期53-61,共9页 Chinese Quarterly Mechanics
  • 相关文献

参考文献6

  • 1李昭银,刘丽丽.两种不同正交异性楔的弹性接触[J].上海力学,1990,11(4):63-72. 被引量:1
  • 2王敏中.受一般载荷的楔:佯谬的解决[J]力学学报,1986(03).
  • 3T. C. T. Ting. The wedge subjected to tractions: a paradox re-examined[J] 1984,Journal of Elasticity(3):235~247
  • 4J. P. Dempsey,G. B. Sinclair. On the singular behavior at the vertex of a bi-material wedge[J] 1981,Journal of Elasticity(3):317~327
  • 5J. P. Dempsey. The wedge subjected to tractions: a paradox resolved[J] 1981,Journal of Elasticity(1):1~10
  • 6V. L. Hein,F. Erdogan. Stress singularities in a two-material wedge[J] 1971,International Journal of Fracture Mechanics(3):317~330

二级参考文献2

  • 1顾志芬.两种材料界面裂纹的应力强度因子[J]复合材料学报,1986(03).
  • 2王敏中.受一般载荷的楔:佯谬的解决[J]力学学报,1986(03).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部