期刊文献+

浓缩数据立方中约束立方梯度的挖掘(英文) 被引量:1

Mining Constrained Cube Gradient for the Condensed Data Cube
下载PDF
导出
摘要 约束立方梯度挖掘是一项重要的挖掘任务,其主要目的是从数据立方中挖掘出满足梯度约束的梯度-探测元组对.然而,现有的研究都是基于一般数据立方的.研究了浓缩数据立方中约束数据立方梯度的挖掘问题.通过扩展LiveSet驱动算法,提出了一个eLiveSet算法.测试表明,该算法在立方梯度挖掘效率上比现有算法要高. Constrained cube gradient mining is an important mining task and its goal is to extract the pairs of gradient-probe cell that satisfy the gradient constraint from a data cube. However, previous work are explored for a general data cube. In this paper, the problem of the mining constrained cube gradient for a condensed cube is studied. An algorithm named as eLiveSet for the problem is developed through the extension of the existing efficient mining algorithm LiveSet-driven. The experimental results show that the algorithm is more effective than the existing algorithm on the performance of mining constrained cube gradient.
出处 《软件学报》 EI CSCD 北大核心 2003年第10期1706-1716,共11页 Journal of Software
基金 国家科技部电子政务项目~~
关键词 数据立方 立方梯度 浓缩数据立方 数据立方计算 关联规则 Constraint theory Database systems
  • 相关文献

参考文献10

  • 1Han J. Towards on-line analytical mining in large databases. SIGMOD Record, 1998,27(1):97-107.
  • 2Palpanas T. Knowledge discovery in data warehouses. SIGMOD Record, 2000,29(3):88-100.
  • 3Abdulghani AA. Cubegrades-Generalization of association rules to mine large datasets[Ph.D. Thesis]. New Brunswick: The State University of New Jersey, 2001.
  • 4Agrawal R, Tomasz I, Arun NS. IrOning association rules between sets of items in large databases. In: Buneman P, ed. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1993. 207-216.
  • 5Gray J, Bosworth A, Layman A, Pirahesh H. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-total. In: Stanley YW, ed. Proceedings of the 12th International Conference on Data Engineering. Washington: IEEE Computer Society Press, 1996. 152-159.
  • 6Dong G, Han J, Lain J, Pei J, Wang K. Mining multi-dimensional constrained gradients in data cubes. In: Peter MG, ed.Proceedings of the 27th International Conference on Very Large Data Bases. San Fransisco: Morgan KaufmannPublishers, 2001.321-330.
  • 7Wang W, Feng J, Lu H, Jeffrey XY. Condensed cube: An effective approach to reducing data cube size. In: Rakesh A, ed.Proceedings of the 18th International Conference on Data Engineering. Washington:IEEE Computer Society Press, 2002.155-165.
  • 8Sarawagi S, Agrawal R, Megiddo N. Discovery-Driven exploration of OLAP data cubes. In: Hans-J6rg Schek, ed. Proceedings of the 6th International Conference on Extending Database Technology. New York: Spring-Verlag, 1998. 168-182.
  • 9Beyer K, Ramakrishnan R. Bottom-Up computation of sparse and iceberg CUBE. In: Davidson DB, Delis A, eds. Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 1999. 359-370.
  • 10Han J, Pei J, Dong G., Wang K. Efficientcomputation of iceberg cubes with complex measures. In: Sellis T, ed. Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data. New York:ACM Press, 2001.1-12.

同被引文献5

  • 1Imielinski T, Mannila H. A database perspective on knowledge discovery. Communications of the ACM, 1996,39 (11): 58-64
  • 2Agrawal R,Imielinski T,Swami A. Mining associations rules between sets of items in large databases. In:Proc.of ACM SIGMOD Conf. on Management of Data (SIGMOD'93),Washington D. C., 1993. 207-216
  • 3Imielinski T, Khachiyan L, Abdulghani A. Cubegrades:Generalizing Association Rules. Data Mining and Knowledge Discovery,2002,6(6) :219-257
  • 4Gray J, Bosworth A, Layman A, Pirahesh H. Data cube: A relational aggregation operator generalizing group-by, cross-tab,and sub-total. In: Proc. of Intl. Conf. on Data Engineering (ICDE'96). Washington, DC, USA. 1996. 152~159
  • 5Wang W, Feng J, Lu H, Jeffrey X Y. Condensed Cube: an effective approach to reducing data cube size. In: Proc. of Intl. Conf. on Data Engineering (ICDE'02) . Washington, DC,USA. 2002. 155-165

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部