期刊文献+

SVM用于基于内容的自然图像分类和检索 被引量:54

Content-Based Natural Image Classification and Retrieval Using SVM
下载PDF
导出
摘要 在传统的基于内容图像检索的方法中 ,由于图像的领域较宽 ,图像的低级视觉特征和高级概念之间存在着较大的语义间隔 ,导致检索效果不佳 .该文认为更有现实意义的做法是 ,缩窄图像的领域以减小低级特征和高级概念间的语义间隔 ,并利用机器学习方法自动建立图像类的模型 ,从而提供用户概念化的图像查询方式 .该文以自然图像领域为例 ,使用支持向量机 (SVM )学习自然图像的类别 ,学习到的模型用于自然图像分类和检索 .实验结果表明作者的方法是可行的 . In the traditional approach of content-based image retrieval, the wide image domain results in the wide semantic gap between the low-level features and the high-level concepts. We propose to narrow the image domain and use machine learning methods to automatically construct models for image classes, thus providing users with a conceptualized way to image query. In this paper, support vector machines are trained for natural image classification. The resulting image class models are incorporated into image retrieval system, so that the users can search natural images by classes.
出处 《计算机学报》 EI CSCD 北大核心 2003年第10期1261-1265,共5页 Chinese Journal of Computers
基金 到国家"八六三"高技术研究发展计划项目"实时图像检索与过滤关键技术研究"课题 ( 2 0 0 1AA14 2 14 0 ) 国家网络与信息安全中心"网络视频流内容检测技术研究及系统"课题资助
关键词 图像检索 自然图像分类 SVM 支持向量机 图像分类 机器学习 图像处理 Classification (of information) Color image processing Feature extraction Image retrieval Learning algorithms
  • 相关文献

参考文献15

  • 1Burkhardt H, Siggelkow S. Invariant features for discriminating between equivalence classes. In:Nonlinear Model-based Image Video Processing and Analysis. NY: John Wiley and Sons,2000.
  • 2Scholkopf B, Smola A J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.Cambridge, Mass: MIT Press, 2002.
  • 3Vapnik V N. The Nature of Statistical Learning Theory. NewYork: Springer-Verlag, 2000.
  • 4Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods—Support Vector Learning. Cambridge, MA: MIT Press, 1999.
  • 5Smeulders A, Worring M et al. Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12) : 1349~ 1380.
  • 6Flickner M et al. Query by image and video content: The QBIC system. IEEE Computer, 1995,28(9) : 23 ~32.
  • 7Bach J R, Fuller C, Gupta Aet al. Virage image search engine: an open framework for image management. SPIE Storage and Retrieval of Image and Video DataBases, 1996,4:76 ~87.
  • 8Smith J, Chang S F. VisualSEEK: A fully automated contentbased image query system. In: Proceedings of the 4th ACM Multimedia Conference,Boston MA, USA, 1996.87~98.
  • 9Vailaya A, Figueiredo M, Jain A, Zhang H-J. A Bayesian framework for semantic classification of outdoor vacation images. In: Proceedings of SPIE:Storage and Retrieval for Image and Video Databases VII, San Jose, CA, USA, 1999,3656:415~426.
  • 10Lipson P, Grimson E, Sinha P. Configuration based scene classification and image indexing. In: Proceedings of the 16th IEEE Conference on Computer Vision and Pattern Recognition,Puerto Rico, 1997. 1007~1013.

同被引文献484

引证文献54

二级引证文献335

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部