期刊文献+

基于人工神经网络的暴雨预报方法探讨 被引量:31

A EXPLORATION OF HEAVY RAIN FORECASTING TECHNIQUE BASED ON ARTIFICIAL NEURAL NETWORKS
下载PDF
导出
摘要 探讨了基于人工神经网络模型的暴雨预报方法。该方法仿预报员的暴雨预报思路,在动力模式的降水预报产品、环流形势场和暴雨落区之间通过人工神经网络建立非线性的统计预报模型,该模型的输入是动力模式的降水预报和初始环流形势场的扩展正交分解主成份分量,输出是预报区域的暴雨落区预报。2000年的汛期试验表明该客观预报方法可明显改进数值预报模式的暴雨落区预报,因此可望在业务预报中有较好的应用前景。 A heavy rain forecasting technique is developed based on artificial neural networks. Imitating weatherman thought, the nonlinear statistical forecasting model is established between forecasting precipitation of dynamical numerical weather model, atmospheric circulation situation and heavy rain area. The model inputs are precipitation production of dynamical numerical model and principal components of extended empirical orthogonal functions(EEOF).And the model outputs are forecasting precipitation classes for heavy rain area. Operational tests during the rainy season in 2000 show that area forecasts on heavy rain can improve obviously by this statistical model, so it may have an excellent foreground in future operational forecasting on heavy rain.
出处 《热带气象学报》 CSCD 北大核心 2003年第4期422-428,共7页 Journal of Tropical Meteorology
关键词 人工神经网络 动力模式 环流形势场 扩展正交分解主分量 暴雨预报 artificial neural networks dynamical numerical model atmospheric circulation situation principal components of EEOF heavy rain forecasting
  • 相关文献

参考文献5

  • 1俞康庆 胡江林 王登炎等.武汉区域中心暴雨数值预报模式(MAPS)的业务试验[A]..台风暴雨数值预报方法和技术研究[C].北京:气象出版社,1996.572-580.
  • 2王繁强,徐文金,陈杰伦,王莘.B-P算法在青海省降雨分区分级预报中的应用[J].高原气象,1997,16(1):105-112. 被引量:9
  • 3胡江林.神经网络模型用于湖北省月降水量预报的探讨[J].暴雨.灾害,1999,(1):36-41.
  • 4BAlK J J, HWANG H S. Tropical cyclone intensity prediction using regress method and neural network[J]. J Meteor Soc Japan, 1998, 76: 711-717.
  • 5ROBERT J K, BARROS A P. Experiments in short-term precipitation forecasting using artificial neural networks[J]. Mon Wea Rev, 1998, 126: 470-482.

二级参考文献9

共引文献10

同被引文献283

引证文献31

二级引证文献330

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部