期刊文献+

肺部孤立性结节定量研究 被引量:2

Quantitative Study of Pulmonary Isolated Nodules
下载PDF
导出
摘要 目的 研究肺部孤立性结节形态参数在良恶性鉴别诊断中的应用价值。方法 选择了在 2 0 0 0年 4月至 2 0 0 1年 5月间 ,经CT引导下肺穿刺活检的 ,且经病理证实的良恶性患者 87例 ,其中良性 18例 ,恶性 69例。对这些病例按三个步骤进行分析 :首先 ,应用Snake模型提取结节的轮廓线 ;然后 ,计算由轮廓线所围成的区域的Legendre矩和傅立叶描述子(FD) ,并求出平均值 ,最后 ,对测量结果 ,利用SAS软件包进行t检验计算机统计学处理。结果 经过t检验 ,矩和傅立叶描述子两个形态学参数在良恶性肿瘤之间具有显著性意义。恶性肿瘤的矩值大于良性肿瘤 ,而FD值恰恰相反。应用矩、傅立叶描述子的 2者组合鉴别肺部孤立性结节良恶性肿瘤具有较高的诊断价值。结论 矩和傅立叶描述子能够定量描述肺部结节的形态特征。 Objective To assess the diagnostic value of shape parameters between benign and malignant in pulmonary isolated nodules. Methods All the 87 cases (18 benign, 69 malignant) were confirmed by pathology. The analysis of these cases was performed in three stages: First, Snake model was used to obtain lesion's boundary. Then, two measures of shape features, including moment and Fourier descriptors (FD), were computed for each region,and their average value was calculated. Finally, the t test was used for all results' statistical analysis by SAS software bag. Results The difference in either moment or FD between malignant and benign had remarkable significance. The value of moment malignant was larger than that of benign, and FD was contrary to moment. Using combination of shape features, the malignant could be predicted. Conclusion Moment and FD can describe quantitatively shape features of pulmonary nodule. [
出处 《中国医学影像技术》 CSCD 2003年第9期1218-1219,共2页 Chinese Journal of Medical Imaging Technology
关键词 傅立叶描述子 计算机辅助诊断 定量研究 肿瘤 Moment Fourier descriptors Computer aided diagnosis Quantitative study Tumour
  • 相关文献

参考文献2

  • 1刘建.薄层高分辨CT评价肺老化的价值[J].中国医学影像技术,2003,19(4):495-497. 被引量:3
  • 2Y Lee, T Hara, H Fujita, et al. Automated Detection of Pulmonary Nodules in Helical CT Images Based on an Improved Template Matching Technique EJ]. IEEE Transactions on Medical Imaging, 2001,20(7) :595-604.

二级参考文献1

共引文献2

同被引文献24

  • 1陈志辉.DSA图像质量保证技术[J].医疗卫生装备,2004,25(10):37-38. 被引量:8
  • 2林晓,邱晓嘉.图像分析技术在医学上的应用[J].包头医学院学报,2005,21(3):311-314. 被引量:8
  • 3CastlemanKR.Digital image processing[M].北京:清华大学出版社,1999..
  • 4Vickers JP, Burnham K J, Dil A. Knowledge-based organ segmentation in low constrast medical computed tomography images [A].Proceedings of the International Conference on Systems Science [C], 2001(3):381~388.
  • 5Wachowiak MP, Smolikova R, Tourassi GD, et al. Generalized mutual information similarity metrics for multimodal biomedical image registration[A]. Engineering in Medicine and Biology. 24 th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society[C]. Houston, Texas, USA:The Institute of Electrical and Electronics Engineers, Inc., 2002(2):1005~1006.
  • 6Haubner M. Virtual reality in medicine computer graphics and interaction techniques[J]. IEEE Trans on Information Technology in Biomedicine, 2004,1(1):611.
  • 7Erdi YE, Wessels Bw, Dejager R, et al. A new fiducial iganent system to overlay abdominal computed tomography or magnetic resonance anatomical images with radiolabeled antibody singlephoton emission computed tomographic scans[J]. Cancer, 1994,73(3):923~931.
  • 8Paulino AC, Thorstad WL, Fox T.Role of fusion in radiotherapy treatment planning[J]. Semin Nucl Med, 2003,33(3):238~243.
  • 9Townsend DW, Carney JP, Yap JT, et al. PET/CT today and to morrow[J]. J Nucl Med, 2004,45(1):4~14.
  • 10Adamy U,Giesen J,John M.Surface reconstruction using umbrella filters[J]. Computational Geometry: Theory and Applications, 2002,21(1-2):63~86.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部